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Abstract: In order to increase the number of situations in which an intelligent vehicle can
operate without human intervention, lateral control is required to accurately guide it in a
reference trajectory regardless of the shape of the road or the longitudinal speed. Some studies
address this problem by tuning a controller for low and high speeds and including an output
adaptation law. In this paper, a strategy framed in the Model-Free Control paradigm is presented
to laterally control the vehicle over a wide speed range. Tracking quality, system stability and
passenger comfort are thoroughly analyzed and compared to similar control structures. The
results obtained both in simulation and with a real vehicle show that the developed strategy
tracks a large number of trajectories with high degree of accuracy, safety and comfort.
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1. INTRODUCTION

Over the last years, autonomous driving capabilities have
been developed, but in order to increase the situations in
which the vehicle operates without driver intervention, ac-
curately controlling the vehicle in any scenario is essential.

In a decoupled control architecture, lateral control keeps
the vehicle on the path without losing stability or impair-
ing passenger comfort, regardless of the road or speed. This
problem has been addressed with different approaches, the
first being to improve the available model of the vehicle in
order to better tune a model-based regulator. Another is
the design of controllers for different longitudinal speeds,
and then provide a fitting law between their different
parameters or outputs. To avoid the problems induced by
a complex system identification, some approaches opted to
rely on model-independent strategies.

In this paper, a new lateral control strategy for au-
tonomous vehicles is presented within the Model-Free
Control (MFC) paradigm (Fliess and Join, 2013). The
proposed control law is based on the adaptation of one
of the key parameters of MFC as a function of driving
speed, allowing thus the vehicle to cope with a variety
of situations without having to re-tune the controller. To
thoroughly evaluate the potential of this strategy, metrics
of tracking quality, stability of the feedback system and
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passenger comfort are defined. A multi-objective optimiza-
tion has been applied in simulation to determine which
control structure provides the best trade-off among the
three criteria in a wide spectrum of situations. The main
contribution of the work relies on the introduction of an
easy-to-implement variation of MFC, which has proven to
be very effective for lateral control of automated vehicles.

The rest of the paper is structured as follows. Section II
presents a brief review of the lateral control strategies in
the literature. A theoretical introduction to Model-Free
Control is presented in Section III. Section IV motivates
the proposed Speed-Adaptive Model-Free Control strat-
egy. The results from simulation and real-world tests are
presented in Section V. Finally, the last section draws some
concluding remarks and the references.

2. STATE OF THE ART

Lateral control of autonomous vehicles is studied from
different approaches, most of them based on a somewhat
realistic model of the vehicle, being the single-track model
the most popular (Arifin et al., 2019), which is linear
and assumes a constant longitudinal velocity. Some real
applications show that this simplification may be inappro-
priate to control the vehicle in any scenario. To overcome
these limitations, different strategies have been proposed
in the last years. Zainal et al. (2017) applied the single-
track model to fit two PID regulators, one for low and one
for high speeds; Liu et al. (2018) used it to synthesize a
robust LQR. Alternatively, Zanon et al. (2014) rely on



a more complex model to develop a Model Predictive
Control (MPC) strategy, and Laghmara et al. (2019) focus
on jointly solving the path planning and control problems;
but this strategies are mainly tested on specific situations.

Real vehicles have complex dynamics that vary with speed
and steering angle, with strong non-linearities, couplings
between lateral and longitudinal dynamics and variability
of parameters that are already difficult to characterize;
consequently, it is extremely hard to find a realistic model
for a large spectrum of driving situations. As a result, the
potential of control strategies that do not rely on a vehicle
dynamic model has catched attention.

Fuzzy control is a good example of these model-free
techniques, as it absorbs some of the variability of the
system parameters and its formulation is intuitive, but
difficult to tune optimally over a wide working range. Two
fuzzy regulators were integrated and validated in traffic-
based driving environments in Godoy et al. (2015); other
works (Jin et al., 2017) confirmed the capabilities of fuzzy
logic for lateral control. Another approach is pure pursuit
control (Park et al., 2014), which is based on a kinematic
model of the vehicle, but its performance degrades when
high velocities or accelerations are requested.

The MFC framework evoked in the introduction was suc-
cessfully applied in vehicle longitudinal control (Villagra
et al., 2009) or in lateral control for low-speed AGVs
(Villagra and Herrero-Perez, 2012). Alternatively, in Men-
hour et al. (2013) the flatness theory (Fliess et al., 1995),
which allows finding differentially flat outputs for non-
linear systems, is applied to implement the lateral control
of a vehicle together with a model-free feedback controller.
This approach exhibited very good performance in simula-
tion, but its deployment in real vehicles requires measure-
ments that cannot be obtained with commercial sensors.
Alternatively, (Wang et al., 2022) proposes an adaptation
mechanism for MFC and apply it on a scale car, but the
resulting adaptation dynamics is too slow for automated
vehicles driving on real roads.

3. MODEL-FREE CONTROL PRINCIPLES

Fliess and Join (2013) state that the system dynamics can
be approximated by an ultra-local model

y(n) = F + α · u (1)

in which the linear relationship between the input u and
the nth derivative of the output y is fitted by a variable F
that absorbs model errors and system disturbances, and
where the ratio constant α is a design parameter.

The control loop is closed by an intelligent PID controller,
iPID controller (usually iP or iPD):

u =
1

α
·
(
−F + y(n)r +Kp e+Ki

∫
e+Kd ė

)
(2)

where u is the control action, suffix r means reference, e
is the tracking error and Kp, Ki and Kd are the control
parameters, emulating those of a PID controller. The term
F must be estimated in real time, for this purpose, it can
be assumed to be the same between consecutive instants
and can be estimated from (1) as follows:

F̂ (tk) = ŷ(n)(tk)− α · u(tk−1) (3)

where F̂ is the estimator of F , tk is the current instant
and ŷ(n) is the filtered nth derivative of y.

Remark 1. Note that the error dynamics derived from (1)

and (2) can be expressed as f(e,Kp,Ki,Kd) = F̂ − F .

If the estimation of F is good enough (F̂ ≈ F ), then
the system dynamics could be made asymptotically stable
through an appropriate choice of the control parameters.

4. SPEED-ADAPTIVE LATERAL CONTROL

The parameter α defines in a certain way the aggressive-
ness of the iP(D) controller, since the higher is α, the
smaller the increase in the control action between sampling
instants. Therefore, varying α might adapt the controller
aggressiveness to different driving situations.
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Fig. 1. Comparison between high and low alpha in low
speed curves and higher speed straight stretches

Fig. 1 shows the same MFC regulator with two different
α: the one with a low value performs better at low speed
curves but becomes highly oscillating at a stretch where
higher speed is allowed; the configuration with high α is
stable for the straight path (with little oscillation) but
does worse tracking at curves. This finding motivated the
introduction of a model-free controller whose α varies as
a function of speed v. This controller has a base α0 which
is kept up to a given speed v0, after which it is increased
proportionally to speed variation with a constant Kα:

α = max {α0, Kα · (v − v0) + α0} (4)

This α variation law allows to obtain a (i) more aggressive
behaviour in urban environments and (ii) smoother actions
on the highway, where the oscillations can impair comfort
and lead to system instability due to the high speed.

5. RESULTS

In this section, the control parameter space is explored
in simulation (section 5.3) using a high-fidelity vehicle



model (section 5.4). This evaluation is done with respect
to three metrics (defined in 5.2) and is applied to the
proposed feedback control approach, a standard MFC and
a PID in a wide set of driving contexts (described in
section 5.1). To confirm the suitability of the estimated
performance potential for each controller (obtained in 5.5),
experimental trials have been prepared and conducted in
an automated prototype, and are reported in section 5.6.

5.1 Benchmark description

Fig. 2 shows an aerial view of the three circuits used in
the simulations, which are designed to cover a wide range
of realistic driving scenarios. They have straight sections,
wide and sharp curves and different dynamic constraints,
as can be seen in Table 1. The reference trajectories
are generated for each path applying the method for
acceleration-limited speed planning proposed in Artuñedo
et al. (2022).

Table 1. Dynamic constraints of each trajectory

Trajectory T1 T2 T3

Maximum speed (km/h) 35 100 70

Maximum long. acceleration (m/s2) 0.4 1.5 2.0

Maximum long. deceleration (m/s2) 0.7 2.0 2.0

Maximum lat. acceleration (m/s2) 1.0 4.0 2.0

5.2 Metrics description

The integral absolute lateral error (IAE) is used to evalu-
ate the tracking quality. But it is observed that the clas-
sical IAU (Integral of the Absolute control action) is not
suitable for analyzing the system dynamics, the frequency
spectrum of the feedback control action is used to define
two different performance indicators:

(1) Mϵ quantifies the low frequency oscillations of the
control action, which can lead to vehicle instability,
as well as impair the comfort of the occupants.

(2) Mζ quantifies the high frequency oscillations of the
control action, which do not destabilize the system
per se, but cause discomfort to the vehicle occupants.

The values of both metrics, Mϵ and Mζ , are computed
from two separated frequency bands, experimentally iden-
tified: ϵ (1.1-4 Hz) and ζ (4-10 Hz), respectively. Note that
20 Hz is the control frequency in this work. A high-pass
filter is firstly applied to the feedback control action with a
cutoff frequency of 0.5 Hz and 4 Hz respectively. Then, the
spectrum is calculated by applying the Short-time Fourier
transform with 5-second overlapping sections.

Mϵ is finally calculated as the mean of the maximum power
spectrum at each section, considering a threshold and a
scale factor to balance the magnitude of both metrics:

Mϵ =
1

n

n∑
i=1

sϵ ·max (10 · logPϵ,i + λϵ)

where n is the amount of 5-second sections, Pϵ,i is the
spectrum power of band ϵ in section i, sϵ is a scale factor
(sϵ = 0.015) and λϵ is a threshold in dB (λϵ = 80dB).
Note that only straight and long sections where the path
curvature is below 0.01 m−1 (drawn in orange in Fig. 2)
are considered due to the high sensitivity of Mϵ.

Mζ is obtained with the maximum (instead of the mean)
power among all sections, using a scale factor of sζ = 0.04
and the same threshold λζ = 80dB. This particularity is
motivated by the low equivalence found in experimental
tests between what is intended to be reflected by this
metric and the value obtained with the mean. However,
when the maximum power is considered, controllers that
exhibit high frequency oscillations in any section of the
test trajectory are penalised with high values of Mζ .

To summarise, IAE is the chosen indicator of the reference
tracking quality, Mϵ measures the (in)stability margin of
the controller and Mζ reflects passenger discomfort.

5.3 Control parameter space exploration

Design trade-offs between tracking accuracy and control
action safety and softness depend on driving dynamics.
It is therefore difficult to determine a unique benchmark
to assess the performance of the controller. Besides, it is
also hard to infer the control parameters of a given control
structure for a precise value of a metric. To overcome this,
a multi-objective optimization problem is defined:

min
ẋ=f(x,p),p∈[pmin,pmax]

J(p)

where the set of objective functions is J(p) = (max(IAEi),
max(Mϵ,i), max(Mζ,i))

T , i = 1..3 is the number of circuit
Ti and p is the set of control parameters that will be com-
pared in Section 5.5. Note that the functions to minimize
are constrained by the system dynamics and the control
parameters are bounded by design.

To solve this problem, the MATLAB’s ParetoSearch al-
gorithm is used. A Pareto front is obtained for each con-
troller showing its potential to minimize each objective.
With the maximum acceptable values for the optimization
objectives and the Pareto front of each controller, a region
is defined. The smaller the region, the greater the poten-
tial of a controller; thus, several controllers can be com-
pared, even if they have very different characteristics. The
acceptable optimization objective zone has been defined
experimentally: It is observed that an IAE greater than
0.35 meters implies poor tracking in the curves; similarly,
an Mϵ greater than 0.25 implies the possibility of system
instability on test trajectories; and a Mζ greater than 0.7
leads to a loss of passenger comfort.

In order to make the results more general, every controller
is simulated in the three benchmark trajectories Ti, which
cover a wide operation range. The three quality metrics
are obtained for each trajectory, and the maximum of each
metric is considered in the optimization. It is thus ensured
that the controller will not be less stable, comfortable or
accurate in any situation.

5.4 Vehicle model used in simulation

The model used in simulations mimics with a high degree
of fidelity the experimental platform used, as it has 14
degrees of freedom (6 for the vehicle body motion: longi-
tudinal, lateral, vertical, roll, pitch, and yaw; and 8 for the
wheels: vertical motion and spin of each wheel).

The power-train modeling comprises: (i) the engine, whose
torque map is modeled from experimental measurements;
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Fig. 2. Benchmark trajectories

(ii) the gearbox, which includes the same drive ratios and
gear shifting logic as the real vehicle; (iii) the resistance
torques coming from braking system and wind and grav-
itational forces. The tire behaviour was reproduced with
the Pacejka tire model (Pacejka and Bakker, 1992).

An external actuation system has been added to the
vehicle’s assisted steering, which is modeled as in Lee et al.
(2018). Its main parameters, such as inertia or backlash,
have been identified from extensive field tests. Moreover,
the small noise coming from the localization system has
been characterized and included in the model.

5.5 Simulation results

All controllers implemented include a feedforward term
δff (Godoy et al., 2015): δff = RS · arctan (L · κ), where
L is the wheelbase, κ is the path curvature and RS is the
steering ratio. Note that this feed-forward term relies on a
simplified kinematic vehicle model and the path curvature.
The total steering control action is δt = δff + δmax · ufb,
where ufb ∈ [−1, 1] is the normalized feedback control
action and δmax is the maximum steering angle.

Three strategies have been evaluated: a discrete PID,
an iPD (hereinafter MFC) and a Speed-Adaptive iPD
(SAMFC). The two latter control laws use a second order
ultra-local model (Fliess and Join, 2021), so that the
discrete form of (2) with no integral action yields:

uiPD(tk) =
−F̂ (tk) + ÿ1r(tk) +Kp e(tk) +Kd

ˆ̇e(tk)

α
ˆ̇e(tk) = ẏ1r(tk)− ˆ̇y1(tk) (5)

ˆ̇y1(tk) =
2y1(tk)− 2y1(tk−1)− (Ts − 2Tc)ˆ̇y1(tk−1)

Ts + 2Tc

where y1 is the lateral deviation, ˆ̇y1 is the estimated
derivative of the vehicle’s lateral deviation, ˆ̇e is the filtered
estimation of the tracking error derivative, Ts is the sample
time and Tc is the derivative filter parameter.

Note that α,Kp andKd are the parameters that are varied
in the optimization of the MFC controller. For SAMFC,
the constant α is replaced by (4), so that α0, Kα and v0
are included in the design parameter set.

The PID controller is expressed as a Z-transform function

UPID(z) =

(
Kp +

Ki · Ts

z − 1
+

Kd ·N
1 +N · Ts

1
z−1

)
E(z) (6)

being Kp, Ki, Kd gains and filter parameter coefficient N
the parameters varied in the multi-objective optimization.

Table 2. Volume under the Pareto front (VUP)

Control strategy PID (6) MFC (5) SAMFC (5)+(4)

VUP 0.0427 0.0404 0.0135

Fig. 3 shows the resulting Pareto fronts, including a 3D
view and its projections on the IAE-Mϵ and IAE-Mζ

planes. Remark that while the Pareto front of the basic
MFC regulator is very similar to the front of the PID
controller, the front of the SAMFC shows a significant
reduction on the three metrics at the same time. Fig. 3
also shows that the Pareto fronts of the tested MFC and
PID intersect and intersperse within the operation range,
making it difficult to compare both strategies.

The SAMFC regulator is able to cancel Mϵ within the
operation range defined, as can be seen in Fig. 3b, in
contrast to the MFC and PID regulators, whose minimum
Mϵ is 0.05 approximately. While inside the operation
range MFC and PID have a minimum IAE of 0.13 and
0.17 meters respectively, the SAMFC regulator reach 0.06
meters. On the other hand, the three strategies offer
several configurations where Mζ is cancelled, as Fig. 3c
shows, meaning the passenger comfort is assured.

Table 2 gathers the volume of the region defined by the
Pareto front of the three strategies and the bounds of
the operating region. As the points of the fronts are not
equally distributed, the volume is obtained by numerical
integration over the lineally interpolated surface between
the points. The smaller the volume of the region (VUP),
the higher the optimization potential of the controller
structure, so, as can be seen in the table, SAMFC has
a significantly better performance than its competitors.

5.6 Experimental results

The vehicle used in the experiments is a Citroën DS3 which
includes hardware modifications for the automated con-
trol of throttle, brake, gearbox and steering systems (see
Fig. 4). Its localization relies on a RTK-DGPS receiver and
on-board vehicle speed, accelerations and yaw rate sensors.
An on-board computer with an Intel Core i7-3610QE and
8Gb RAM is used for control. It is also equipped with sen-
sors to perceive the environment (Artuñedo et al., 2019).

From the acceptable operating region defined in sec-
tion 5.3, the parameter set that yields the best tracking
quality is selected for each controller. The values are shown
in Table 3. Note that this decision yields for this specific
system a MFC controller configuration with Kp = 0.
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Fig. 4. Experimental platform

Table 3. Parameters set for each controller

Contr. Kp Kd N α/α0 Kα v0
PID 0.2216 0.0367 5.0 - - -

MFC 0 19.28 - 1409 - -

SAMFC 0.5625 2.688 - 57.15 9.547 26.83

Table 4. Setups tested in the experimental platform

Trajectory S1 S2

Max speed (km/h) 35 56

Max long. acceleration (m/s2) 0.4 1.0

Max long. deceleration (m/s2) 0.7 2.0

Max lat. acceleration (m/s2) 1.0 2.0

Table 5. Results obtained for each controller and trajectory

Controller
S1 S2

IAE Mϵ Mζ IAE Mϵ Mζ

PID (6) 0.16 0.002 0.17 0.15 0.132 0.79

MFC (5) 0.12 0.017 0.00 0.10 0.151 0.25

SAMFC (5)+(4) 0.03 0.246 0.68 0.03 0.220 0.79

X (m)

MLEPID: 0.59 m

MLESAMFC: 0.17 m MLEMFC: 0.47 m

Fig. 5. Tracking results on trajectory S1

The path of T1 (see Fig. 2a) was used to generate two dif-
ferent testing trajectories using the constraints in Table 4.
Then, the controllers were evaluated on both trajectories.

The paths followed by the vehicle to track S1 are depicted
in Fig. 5. As shown, all tested controllers are able to
complete the circuit with small lateral errors. Neverthe-
less, some differences can be appreciated in the sharpest
curves, where the Maximum Lateral Error (MLE) is signif-
icantly reduced by the SAMFC. In addition, Table 5 shows
clear differences in the tracking quality indicator (IAE, in
meters): SAMFC obtains a reduction of more than 70%
with respect to MFC and PID. In order to analyze the
performance in more detail, Fig. 7 and Fig. 6 shows the
control action and the lateral error over time, respectively,
where δsw the measured steering wheel angle.

None of the controllers exhibit uncomfortable or near-
unstable behavior, as it is confirmed by Mϵ and Mζ . They
remain within the limits of the operating region, with the
exception of Mζ for SAMFC, that is slightly higher than
expected due to minor unmodeled behaviours. However,
the performance of SAMFC in the longest straight section
of S1 presents less low-frequency oscillations than MFC
and PID, as can be observed between instants t = 47 s
and t = 60 s in Fig. 7. Note that the SAMFC is able to
achieve a very good tracking at low speeds (sharp turns)
while limiting the amplitude of low frequency oscillations
at higher speeds, resulting in a more stable behaviour.

Finally, it is worth highlighting that the adaptation mech-
anism of α is simple to implement and decoupled from the
feedback gains, which makes the method easier to tune
than a parameter varying PID.

CONCLUDING REMARKS

The aim of this work was to obtain a lateral control
strategy with a wide operation range in order to increase
the situations in which an autonomous vehicle navigates
without intervention. A minimum level of safety and com-
fort were imposed. To that end, a systematic procedure to
explore the controllers performance has been applied on
trajectories with different shapes and dynamic constraints.



Fig. 6. Lateral error of each controller
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Fig. 7. Control actions of each controller

Speed-Adaptive MFC has demonstrated both in simula-
tion and in real-world tests that it can outperform other
controllers with a similar structure, such as a PID and
a MFC. Furthermore, the changes introduced to the basic
MFC do not significantly increase the controller tuning dif-
ficulty, which, together with the simple theoretical basis of
MFC, results in an intuitive and efficient control strategy.

Future work will assess the tracking capabilities and ro-
bustness of SAMFC with respect to other model-based
control strategies, such as Model Predictive Control.
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