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Speed Profile Generation Strategy for Efficient
Merging of Automated Vehicles on Roundabouts

with Realistic Traffic
Juan Felipe Medina-Lee, Jorge Godoy, Antonio Artuñedo and Jorge Villagra

Abstract—The capabilities of automated vehicles have in-
creased over the last years, and different driving strategies have
shown promising results on a variety of scenarios. However, there
are still many challenges to be solved, and handling crowded
roundabouts is one of them. This kind of scenario requires
both safe and efficient maneuvers from the autonomous driving
systems in order to maintain a proper traffic flow. This work
presents a strategy to generate different speed profiles for a
set of path candidates in order to obtain a merging maneuver
according to current traffic scene. The proposed mechanism relies
on the use of fictitious accelerations generated by leader and
lag vehicles, incorporating by design comfort and safety bounds.
The autonomous driving system proposed in this work was tested
on realistic driving scenarios collected from public datasets and
its performance was compared to human drivers on the same
scenarios. The results showed in a variety of situations that the
automated vehicle was capable of merging into roundabouts with
tight merging gaps while maintaining both comfort and safety
constraints.

Index Terms—Autonomous driving, motion planning, trajec-
tory generation, speed profile, roundabouts, merging algorithm.

I. INTRODUCTION

AUTONOMOUS driving systems (ADS) have shown great
improvement over the recent years. However, there are

still some challenges to be resolved before Autonomous Ve-
hicles (AV) can properly drive on highly dynamic scenarios
like urban roundabouts [1]. Even though the use of these road
layouts has significantly increased over the years, the round-
abouts crossing problem for AV has received little attention
in the literature [2]. A specific challenge to be addressed
in the design of roundabout-oriented ADS is their overly
cautious behavior, that in the interests of ensuring safety, can
produce unhuman-like behavior. Such conservative behaviors
can degrade the driving quality and may jeopardize safety
when the ADS decisions are not expected by other road
participants [3].

The state-of-the art in cooperative speed planning for Con-
nected and Automated Vehicles (CAV) often rely on optimiza-
tion and control schemes [4] [5] whose goal is to determine a
speed profile for each involved vehicle. Their deployment is in
different degrees of progress, but they were mainly designed to
applications where automation levels are not necessarily too
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high. If stand-alone highly automated vehicles are targeted,
speed planning requires a higher flexibility and closer con-
nection with path and maneuver planners. This is particularly
true in complex urban scenarios, such as roundabouts, for
which some previous works exist. The authors in [6] propose
a two-stage optimization model to handle traffic on round-
abouts for fully connected automated vehicles equipped with
Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V)
technologies. The first stage optimizes the vehicle arrival time
at the roundabout, while the second stage optimizes the vehicle
trajectories by minimizing the acceleration fluctuation. In [7]
it is proposed a collaborative strategy using V2V for handling
traffic on intersections and roundabouts, where the speed of the
vehicles is reduced or increased according to the expected time
to reach the end of the intersection. In [8] the vehicles merging
into the roundabout are coordinated using a Roundabout
Coordination Unit (RCU) that determines the acceleration
of automated vehicles for a smooth merging and to avoid
collisions. In the case of [9], the authors propose a decision
making algorithm considering personalized driving behaviors
while using Model Predictive Control (MPC). These vehicle-
to-everything (V2X) approaches show promising results, but it
will not be easy to see them deployed in a near future, as not
all vehicles may have the required connectivity and perception
technologies.

Different path planning primitives have been tested in
roundabouts scenarios, e.g. Bézier [10], splines [11] or
clothoids [12]. However, these works did not consider other
traffic agents on the scene. To cope with this limitation,
some studies take into consideration the evolution of traffic
using their on-board perception system. In [13] the authors
propose a tactical behavior planner to navigate on roundabouts,
which selects the most appropriate trajectory according to a
multi-objective function. In the case of [14], the ADS uses
a hybrid trajectory planning combining Bézier curves for the
path generation and MPC for the speed control of the Ego-
Vehicle (EV). The authors in [1] propose a trajectory planner
using support vector machine to identify the collision-free
space and to simultaneously generate the path and the speed
profile for the EV. All these contributions were tested on
controlled and limited traffic scenes, where only one Other
Vehicle (OV) was present in the roundabout at the moment of
the merging maneuver.

In [2], the authors propose a strategy for an ADS to cross
roundabouts in a safely manner; they use virtual instances
of the vehicles in the roundabout and validate the behavior
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of their system using realistic scenes from data sets. For
the speed profile generation proposed in this work they set
maximum nominal speed when there is no leader vehicle on
the roundabout, or set the same speed as the leader vehicle in
case it exists. The planner proposed in [13] generates trajectory
candidates with speed profiles based on Bézier curves with
different final speeds, which are created according to comfort
requirements, and then selects a trajectory that maximizes a
behavior selection function. The decision making algorithm
proposed in [15] uses a game-theoretic model that represents
the interactions between the EV and OVs, and adapts them
depending on an estimated driver type; the speed of the EV
is generated by selecting an action from a discrete action set,
which allows to maintain the current speed, brake at a constant
deceleration or fully accelerate. These works can work under
different traffic conditions, but the speed profile generation for
the EV either is too simplistic or it does not consider the state
of the OVs to properly adapt to the current traffic situation.

In the light of the above, the literature on decision making
for on-road AVs is very sparse in terms of works dealing with
the efficient on-board management of roundabouts with traffic.
Indeed, although partial contributions exist, there is a need to
simultaneously cope with the following four challenges:

• avoid overcautious behaviors when entering and leaving
the roundabout;

• test not only on specific and limited traffic, but on generic
layouts and with different replicable traffic patterns;

• operate irrespective of whether there is an external coor-
dination unit to control connected vehicles;

• avoid the generation of speed profiles that are too sim-
plistic or do not take into account the traffic status in the
roundabout, leading to unpredictable maneuvers.

In this work, a novel strategy is proposed dealing with
these challenges. A set of possible trajectories is generated
based on both the geometry of the road and the status of the
OVs, obtaining thus a safe, yet efficient maneuver when facing
a roundabout. The overcautious behavior of the resulting
trajectories is modulated with virtual accelerations induced
by the lead and lag vehicles. The generation of multiple
candidates with different acceleration limits allows the ADS
to explore a large diversity of trajectories and select the best of
them according to a merit function, enhancing the performance
of the very few similar existing approaches. Note that this
strategy, designed to deal with the complexity of roundabouts,
is fully operational in other driving scenarios -as shown in
[16]- and could be compatible with works like [17] to handle

platoons merging and splitting maneuvers.
In order to evaluate the performance of the trajectory

generation algorithm, realistic traffic scenes from the openDD
dataset [18] were recreated on a simulation environment. The
main contributions of this work with respect to the existing
motion planning literature can be summarized in the four
following points:

• A speed profile generation strategy that takes into account
the evolution of obstacles present in the driving scene and
is seamlessly integrated with a path planner to dynami-
cally adjust the acceleration along the path. The resulting

algorithm is able to explore, provoke and maintain safety
gaps with potential lag or leader vehicles, while meeting
comfort constraints and achieving a high degree of traffic
efficiency.

• Validation of the proposed strategy on naturalistic
and replicable roundabouts scenes, obtained from the
openDD dataset and implemented in a software-in-the
loop simulation framework.

• Performance comparison of the proposed trajectory gen-
erator on realistic and dense traffic scenarios with respect
to different human drivers and to another state-of-the-art
technique.

• Evaluation of the trajectory generation robustness when
facing speed variations of the involved vehicles in natu-
ralistic traffic scenes.

The outline of the paper is as follows: Section II presents
an overview of the ADS architecture and different aspects
to take into consideration when facing a roundabout. Section
III describes the speed profile generation strategy to handle
a roundabout. The experimental results are shown in Section
IV. Finally, Section V presents the concluding remarks.

II. AUTONOMOUS DRIVING FRAMEWORK

A. ADS architecture
As can be seen in Fig. 1, the ADS proposed in this work is

divided in different modules with specific tasks in the driving
process. The global router receives the destination point and
calculates the complete route from the current position of the
EV to the destination using a digital map on a lanelet2 format
[19]. The perception module determines the status of traffic
agents present on the scene. In this work it is assumed that
the OVs pose and dimensions are known; the reader may find
in [20] an implementation of the perception module. Another
function of this module is to compute the motion predictions
of the vehicles present in the scene, described in detail in
[21]. The maneuver planner module identifies the reachable
navigation corridors based on the EV position and selects the
most appropriate one considering the global route and the
state of other traffic agents. The Trajectory Generator (TG)
module creates a valid set of trajectories (Γ) and selects the
best of them (Γb) using a merit function that combines four
Decision Variables (DV): longitudinal comfort, lateral comfort,
safety and utility according to a set of weights ω which
allows to customize the driving style by prioritizing one or
more DVs over the others. In order to obtain Γ, a path set
P is generated using quintic Bézier curves, and, for each path
candidate ρ ∈ P , different speed profiles are computed to meet
both comfort and safety constraints. A complete description
of the merit function and the trajectory generation process
is presented in [16]. The main focus of this paper is to
propose a strategy to generate valid speed profiles for each path
to perform an efficient roundabout merging, as described in
section III. Finally, the control module calculates the throttle,
braking and steering wheel commands to track Γb.

B. Possible driving scenarios when facing a roundabout
When the EV is heading into a roundabout it has to decide

whether (i) it merges before an OV already driving on the
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Fig. 1. Block diagram of the ADS architecture.

(a) (b)
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Fig. 2. Possible merging scenarios on a roundabout. (a-b) Merging before
another vehicle. (c-d) Merging after another vehicle. (e-f) Stopping on yield
line.

roundabout, (ii) it slows down to merge into the roundabout
after an OV or (iii) it stops on the yield line. These scenarios
are presented on Fig. 2.

Fig. 2a shows the initial moment of a driving scenario where
the EV (black) is heading into a roundabout with a leader
vehicle OVlead (red) and a lag vehicle OVlag (yellow) driving
on the roundabout-ring; in this scenario, the EV is able to
merge before OVlag, as shown on Fig. 2b. For this type of
scenario, OVlead may not exist. Fig. 2c shows the second
possible scenario, where there is a vehicle on the roundabout
and it is not possible to merge before it passes the intersection
point. In that case, the EV must reduce its speed so it can
merge after the OV without stopping on the yield line, as
shown on the Fig. 2d. In the last scenario, there is dense traffic
on the roundabout (see Fig. 2e) and the EV has to stop on the
yield line to wait for a large enough gap to merge on the
roundabout (Fig. 2f).
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Fig. 3. PCPs created for an obstacle driving inside a roundabout during
a merging maneuver. (a) Obstacle predicted positions. (b) Possible collision
points.

C. Possible Collision Points

In order to compute the merging speed profile for each
ρ ∈ P , the predictions of the OVs are projected into ρ using
a spatio-temporal representation. These projections are com-
puted by finding intersections between the polygon occupied
by the EV when following ρ and the predicted positions of
the OVs. Each time a prediction of an OV intersects with
the ρ, a single point is created. This projections will be
referred to as Possible Collision Points (PCP). The PCPs also
contain information about the ID and the speed of the OV
(see [22] for more details). Fig. 3a shows the predictions for
a time interval t ∈ [0, 7s] of an OV (yellow vehicle) driving
inside a roundabout and a path candidate ρ ∈ P (red line).
It can be observed that some of the predicted positions for
the OV intersect with ρ. The resulting PCPs for this scenario
are displayed on Fig. 3b. The yellow circles represent the
projected positions on ρ of the intersecting predictions, which
start at t = 4.8s; the orange circles are inferred positions of
the OV along ρ computed from the yellow points. The initial
position of the EV on ρ is xego = 0m, hence, an OV is
considered as an OVlag if the position of its PCP at t = 0s is
lower than 0m. In the driving scenario of Fig. 3, the yellow
OV inside the roundabout is considered an OVlag since the
position of its PCP at t = 0s is PCPt=0 = −16.5m.

III. SPEED PROFILE GENERATION

For each path candidate ρ ∈ P , a fixed number Nsp of speed
profiles are generated, each of them with different acceleration
limits to increase the reaching possibilities of the trajectory set.
The first step is to compute an obstacle-free speed profile Λ
that takes into account the path geometry as well as lateral and
longitudinal comfort acceleration constraints. Then, using Λ
as the highest limit, a traffic-based speed profile Vego is built
considering the obstacles present on the scene. The process
of the speed profile generation when there are only leader
vehicles on the scene is described on [16]. In this work, a
complimentary strategy is proposed for generating both Λ and
Vego on crowded roundabouts.

Fig. 4 shows a data flow diagram of the algorithm that
generates the speed profile for each ρ when a roundabout
scenario is found by the EV. If there is an OVlag driving on the
roundabout, Vego will attempt to merge into the roundabout
before OVlag gets into the intersection point. If that maneuver
is not feasible because safe distances with respect to OVlag
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Fig. 4. Speed profile generation algorithm for roundabouts

and OVlead (if present) cannot be guaranteed, a new Vego is
created so that the EV merges after OVlag. Finally, if it is not
possible to merge into the roundabout without stopping, Vego

will lead the EV to stop on the yield line. If there is an OV
also heading into the roundabout between the EV and the yield
line, then Vego will use the inter-distance strategy proposed in
[16] instead of the algorithm of Fig. 4. The location of the EV
on the digital map is used to improve the consistency of the
maneuvers over time i.e., in case the decision was to merge
before an OVlag, this decision cannot be changed once the
EV has entered the roundabout-entrance zone (green lanes of
Fig. 2) for safety reasons. Or when the EV is traveling on
the roundabout-ring, the speed profile is generated taking into
account the higher priority of that road over incoming vehicles
into the roundabout.

A. Merging before another vehicle

The speed profile to merge before OVlag is generated
using the following approach: the OVlag has a push-forward
influence γlag on the EV acceleration, while the OVlead has
a push-back influence γlead on the EV. The acceleration of
the EV (ẍego) is computed by combining those influences,
considering the gap distance and the speed difference with
respect to both OVlag and OVlead. This model is illustrated
on Fig. 5a. Once ẍego is calculated, it is integrated to obtain a
new value of ẋego which is appended to Vego. Finally, ẋego is
integrated to update the position of the EV on the path. This
process is repeated as long as xego is lower than the length L
of ρ, as depicted on Fig. 5b. The positions and speeds of the
leader and lag vehicles (xlag, ẋlag, xlead, ẋlead) are updated
using the information of the PCPs (described in II-C).

The computation of γlag takes into account the speed
difference between the EV and the OVlag as follows:

γlag =


γmax, if ẋego < ẋlag,

γmlag, if ẋlag ⩽ ẋego < ẋlag + λ,

0, otherwise.
(1)

lag

Ego-vehicle Leader-vehicleLag-vehicle

lead

..
xego

(a)

x     egowhile  <L  

(b)

Fig. 5. Merging before another vehicle model. (a) Influences γlag and γlead
from the OV. (b) Iterative process of speed profile generation.

where γmlag = γmax −
γmax

λ
(ẋego − ẋlag)

Note that if the EV is slower than the OVlag, then γlag =
γmax, where γmax is a design parameter that establishes the
maximum possible acceleration for the EV during the merging
maneuver. In case the EV is faster than the OVlag, the value
of γlag decreases linearly with respect to the speed difference,
until it gets to 0 when ẋego > λ + ẋlag , being λ a design
parameter that adjusts the influence of the OVs on the EV
acceleration. This implies that if the EV is significantly faster
than OVlag during the trajectory, it is not possible to increase
its acceleration at that point.

Likewise, γlead considers the speed difference of the EV
with respect to the leader vehicle:

γlead =


γmin, if ẋlead < ẋego,

γmlead, if ẋlead − λ ⩽ ẋego < ẋlead,

0, otherwise.
(2)

where γmlead = γmin −
γmin

λ
(ẋlead − ẋego)

If the EV is faster than OVlead, then γlead is set to γmin,
which is a design parameter that defines the maximum possible
braking acceleration. If the EV is slower than OVlead, the
magnitude of γmin decreases linearly until it gets to 0 when
ẋego < ẋlead − λ.

Finally, the acceleration ẍego is obtained using the values
of γlag and γlead and the gap distances with respect to both
OVs:

ẍego =


γlag, if xego < xlag +Blag,

γmid, if xlag +Blag ⩽ xego < xlead −Bego,

γlead, otherwise.
(3)
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being Blag the minimum safe gap between OVlag and the EV,
and Bego the minimum safe gap between the EV and OVlead,
both computed using the second equation of motion:

B = dc +
ẋ2

2γbrake
(4)

where dc is a parameter that defines the minimum possible
separation between two vehicles; ẋ is the speed of the vehicle
of interest; and γbrake is the maximum braking acceleration,
which is γmin for the EV and γmin,OV for the OV (a design
parameter that defines the maximum acceleration considered
safe for an external vehicle to apply during its driving).

If the EV is too close to OVlag, then ẍego = γlag. If, on the
contrary, the EV is too close to OVlead a negative acceleration
ẍego = γlead is set. In any other case, the value of ẍego is
computed using a function with a minimum possible value of
γlead and maximum possible value of γlag, as follows:

γmid = γlead + α (γlag − γlead) (5)

where α is defined as:

α = 1−
(

xego −Glag

Glead −Glag

)3

(6)

being Glag = xlag +Blag and Glead = xlead−Bego the limit
positions of the lag and leader vehicles that respectively ensure
safe gaps during the merging maneuver.

The term α defines the influence of γlead and γlag on ẍego

based on the distance with the OVs, i.e. if (Glead−Glag) >>
(xego−Glag) =⇒ α→ 1 =⇒ γmid → γlag, meaning that if
the leader vehicle is further from the EV than the lag vehicle,
the latter would have a larger influence on the acceleration
of the EV, and vice versa. The motivation to use a cubic
function for α is to obtain values more rapidly close to 1 when
(Glead − Glag) > (xego − Glag) than those obtained with a
linear function. As a result, the influence of γlag is significantly
increased on the merging acceleration. In the special case that
OVlead does not exist, then γlead = 0 and the term Glead in
(6) is replaced with xego+δnl, where δnl is a design parameter
which emulates a virtual leader vehicle at a fixed distance.

The merging profile Vego is considered dangerous if the
safe gap with respect to the leader or the lag vehicle cannot
be guaranteed after the position-on-path of the EV is larger
than the position-on-path of the yield line (xyl). This danger
condition δ can be formalized as follows:

δ = (xego < Glag ∨ xego > Glead) ∧ (xego > xyl) (7)

If the danger condition is met, the merging-before maneuver
is aborted, and a new speed profile is created trying to merge
after the lag-vehicle has passed the intersection point.

Fig. 6 shows a roundabout scenario where the EV is merging
between a leader vehicle (blue) and a lag vehicle (red). The
path candidates set P is plotted in green, and one of the
candidates ρ ∈ P is highlighted in magenta. The initial state
of the vehicles is detailed in Table I, where the initial position
of the OV is computed with the virtual projection on the EV
path at t = 0, using the PCPs.
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TABLE I
INITIAL STATE OF VEHICLES FOR THE MERGING-BEFORE EXAMPLE

SCENE.

Vehicle Init. pos. on EV path (m) Speed (km/h)
Ego-vehicle 0.0 8.0
Blue vehicle (Leader) 25.0 12.0
Red vehicle (Lag) -15.0 16.0

For this case Nsp = 4, and a different value γmax,i , i ∈
1 . . . 4 is used to generate each speed profile. Also, the position
on path of the yielding line is xyl = 13.9m. The configuration
parameters are shown in table III.

Fig. 7 shows the resulting Vego,i for ρ when different values
of γmax are used. The traveling speeds of ẋlag and ẋlead are
also plotted.

For all Vego, the speed of the EV increases at the beginning
of the merging maneuver, converging around Vlead at the end.
This behavior is expected since Vego(0) < ẋlag, and therefore
the value of γlag is large at first, generating higher values of
ẍego at the beginning of the maneuver. As the EV gets closer
to OVlead, ẋego becomes higher than ẋlag , so the value of γlag
decreases, reducing the traveling speed. In order to show how
the merging speed profile generation works, the limit speed
profile Λ was not taken into account in this example, but
in normal conditions the values of Vego are limited by the
magnitude of Λ, as described in [16].
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The diversity on the resulting speed profiles is important to
the decision making algorithm, because, in case the weights
ω of the merit function (section II-A) are configured to
prioritize utility, Vego,4 is more likely to be selected as the
best trajectory. Conversely, if the weights are configured to
prioritize longitudinal comfort, then the trajectory provided
by Vego,1 would be preferred.

Fig. 8 shows the distance-on-path evolution for all Vego,i.
The PCP for OVlag and OVlead are plotted using yellow and
orange circles, using the same color code than Fig. 3b. The
limit positions Glead and Glag are also depicted on the figure
using green and brown bullets, respectively. It can be seen that
all speed profiles maintain xego between the limit positions
all along the trajectory, even at the end (t > 10s) when the
gap becomes narrower. The only exception to this occurs for
Vego,1, when xego < Glag at t ≈ 2.2s (red and blue dotted
lines on Fig. 8), but since xego < xyl at that moment, the
danger condition (7) is not triggered.

In the interest of showing the evolution over time of the
parameters involved on the speed profile generation, as well
as their interdependence and their roles on the process, Fig.9
shows the values of γlead, γlag , α and ẍego for the generation
of Vego,3. Since Vego,3(0.6s) > Vlead then γlead = γmin

from that moment, except on t = [8.5s , 10.1s]. In the case of
γlag, its value is lower than γmax for t = [1.1s , 6.9s] when
Vego,3 > Vlag (see Fig. 7). The evolution of the term α is
plotted on a purple dotted line that uses the right hand vertical
axis on the figure. It starts at α = 1 because xego ≈ Glag at
the beginning of the maneuver, resulting on ẍego = γlag. As
the EV moves away from Glag and gets closer to Glead, the
value of α decreases, so γlead gets a larger influence on the
value of ẍego, and the EV reduces its acceleration for t > 3.5s.

B. Merging after another vehicle

According to [13], human drivers tend to reduce the driving
speed before the yield line without stopping completely when
they are approaching a roundabout with traffic; this behavior
allows to merge into the roundabout in a more efficient way
after the OV has passed. Taking this into consideration, a
limit speed profile (Λ) is generated with different restrictions
such as a maximum lateral acceleration (γmax,lat), maximum
longitudinal acceleration (γmax), minimum longitudinal accel-
eration for comfort (γmin,com), initial speed (vi), final speed
(vf ), and a low-merging-speed restriction which imposes a
speed value vyield during a distance sr before the yield line.
The generation of Λ is performed by using algorithm 1. In
the first step of the algorithm, the speed profile is computed
by limiting the lateral acceleration according to the curvature
of the path (using a circular motion equation). Then, the
initial and final speeds of the profile are set. Next, the low-
merging-speed restriction is applied to the path indexes before
the yielding line. In the last section of the algorithm, the
longitudinal acceleration is limited by verifying the speed
variation between two consecutive points on the path (and
modifying the speed if necessary). This process is repeated
forwards and backwards to limit both positive and negative
accelerations.

Algorithm 1 Restriction Speed profile.
Input: (κ, vi, vf , vr, ir0, iyl, dp)
Output: Λ

1: Λ←
√

γmax,lat

|κ|
2: Λ1 ← vi
3: ΛN ← vf
4: if (ir0 >= 0) then
5: Λn ← vr for n = ir0, ..., iyl
6: end if
7: for n = 1 to N do
8: an ←

Λ2
n − Λ2

n−1

2 dp

9: if (an > γmax) then
10: Λn+1 ←

√
Λ2
n + 2 γmax dp

11: an ← γmax

12: end if
13: end for
14: for n = N to 1 do
15: an ←

Λ2
n − Λ2

n−1

2 dp

16: if (an < γmin,com) then
17: Λn ←

√
Λ2
n+1 + 2 γmin,com dp

18: an ← γmin,com

19: end if
20: end for
21: return Λ

The inputs of the algorithm are the curvature κ of a candi-
date path ρ; the final speed vf , derived from the road curvature;
the restriction speed to apply before the yield line vr; the index
ir0 of the node on the path where speed restriction must start,
located at a position on path xr0 = xyl − sr; the index iyl of
the node on the path where there is an intersection with the
yield line, and the distance dp used to discretize the Bézier
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scene.

curves of P . In case there is no yield line on the scene, or
the speed restriction before the yield line is not required i.e.
during the merging-before maneuver, the values of ir0 and iyl
are set to −1.

Once the limit speed profile Λ is computed, the dynamic
speed profile Vego may be generated. To this purpose, the
algorithm proposed in [16] is implemented with a single
variation: to discard the PCPs of the OV inside the roundabout
while xego < xyl. The feasibility of the maneuver is evaluated
checking the gap between the closest PCP and the position of
the EV at the time the yield line is reached (tyl), as follows:

δ = min(PCPt=tyl
) < (xego +Bego) (8)

If the danger condition becomes true, the merging-after
profile is not feasible and a stop-on-yield-line maneuver is
performed. If the gap is safe, the speed profile for xego > xyl

is generated using the inter-distance model.
Fig. 10 shows a driving scene where the ego-vehicle is

merging into a roundabout with three vehicles inside. The
initial state of the vehicles on the scene is displayed on table
II.

TABLE II
INITIAL STATE OF VEHICLES FOR THE MERGING-AFTER EXAMPLE

SCENE.

Vehicle Dist. on EV path (m) Speed (km/h)
Ego-vehicle 0.0 18.2
Purple vehicle 29.5 24.4
Red vehicle 1.2 27.9
Green vehicle -8.6 14.3

The position on path of the yielding line is xyl = 13.9m;
the parameters used for the generation of Vego are depicted in
table III.

The speed profile for this maneuver is displayed on Fig.
11 and the position-on-path evolution is shown on Fig. 12.
A merging maneuver before OVred is not possible since the
back-propagated PCP show an initial position higher than 0m
(Fig. 12), so it is not considered as a lag vehicle. On the
other hand, a merging maneuver between OVred and OVgreen

was not possible to find, since the danger condition (7) was
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Fig. 11. Limit speed profile Λ and final speed profile Vego during the
merging-after example scene.
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Fig. 12. Possible collision points of the OVs and position-on-path evolution
of the ego-vehicle for the merging-after example scene.

triggered for all the generated profiles. Hence, the generated
maneuver attempts to merge into the roundabout after OVgreen

has crossed the intersection point.
As can be observed in Fig. 11, the limit speed profile Λ (blue

dotted line) sets the restriction speed to vyield = 4km/h for
the segment of the path s = [7.9m : 13.9m]. By the time the
EV reaches xyl (marked with a vertical dashed line at tyl =
7.7s both in Fig. 11 and Fig. 12), the closest PCP position
is min(PCPt=tyl

) = 22.3m (due to OVgreen). In this case,
the maneuver is considered feasible since the danger condition
(8) is not triggered because 22.3m > 13.9m + 7.26m. If the
danger condition is triggered, the speed profile is discarded and
a stop-on-yield-line maneuver would be generated. The speed
profile for t > tyl is generated using the inter-distance model
proposed in [16], to maintain a safe distance with respect to
the PCP of the last OV, while meeting comfort constraints (i.e.
Vego < Λ).

In the special case there is no OV present inside the
roundabout, the speed profile is generated using the algorithm
described on this section, but instead of using the restriction
parameter vr, a larger restriction parameter vrf is used.

C. Stopping on yield line

The last option, when it is not possible to merge before or
after another vehicle on the roundabout, is to stop the vehicle
on the yield line and wait for a gap large enough to merge into
the roundabout. The speed profile to stop on the yield line is
generated using Algorithm 1. In this specific case, vr = 0m/s
and the index ir0 is computed using a distance sr = 4m, so
that the EV stops at a safe distance from the roundabout ring.
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(a) (b)

Fig. 13. Aerial view of the testing roundabouts of openDD. (a) Roundabout
rdb4. (b) Roundabout rdb7.

IV. EXPERIMENTAL RESULTS

This section details the experimental setup used to validate
the performance of the TG using the described merging
strategy for roundabouts; it also describes the experiments and
analyses the obtained results. Two types of experiments were
designed and executed:

• Recreate a merging maneuver from a public dataset in
a simulation environment to evaluate the performance
of the TG and compare it with (i) a real human-driven
vehicle and (ii) a state-of-the-art technique.

• Generate different traffic scenes by randomly modifying
the driving speed of the OVs from the original dataset
scenes. Then, evaluate the robustness of the algorithm
when facing these traffic conditions.

The experiments were conducted on two of the roundabouts
available on openDD: rdb4 and rdb7. The first roundabout has
a radius of 22m, while the latter has a radius of 18.5m. Fig.
13 shows an aerial view of the used roundabouts.

The configuration parameters used during the experiments
are shown in table III.

TABLE III
CONFIGURATION PARAMETERS.

Parameter Value Units
γmax 2.5 m/s2

γmin,com -2 m/s2

γmax,lat 2.5 m/s2

γmin -4 m/s2

γmin,OV -1.5 m/s2

λ 1.38
vr 5 km/h

vrf 15 km/h

sr 14 m

dc 6 m

δnl 15 m

A. Experimental setup

The TG was tested using a software-in-the-loop (SIL) simu-
lation environment. The simulation software used is SCANeR
Studio 1.9 [23], which contains the tools and models to build
virtual scenarios including infrastructure, road environment,
vehicles, and traffic. The driving scenarios created in SCANeR

ADS

Mission

Handler

Open DD

Dataset

Ego Vehicle

Handling

Traffic

Control

SCANeR Studio

..
.

L

C

M

A

P

I

Fig. 14. Software architecture used to run realistic traffic scenes on a SiL
simulation

for this work are real traffic scenes obtained from the dataset
openDD. In order to replicate the driving scenes from the
dataset on the simulator, a software module named Mission
handler was implemented. It is able to read vehicles state
from a selected scene of the dataset and transmit traffic
commands to the vehicles on the simulator. The modular
architecture of SCANeR Studio requires different modules
working in parallel to run a simulation, in this framework,
two customized modules were developed (i) to control the
vehicles transmitted by the Mission handler and (ii) to handle
the ego vehicle on the simulation. The data transmitted from
the Mission Handler to the simulator and the data shared
between the ADS and the simulator is handled by a customized
Lightweight Communications and Marshalling (LCM) API (a
detailed description of this API is depicted on [24]). Using
this approach it is possible to test the TG in a closed loop
architecture, where, even though the virtual vehicles are set to
have the same behavior as the ones on the dataset, they have
the ability to react to the EV’s behavior during the simulation.
This architecture is shown in Fig. 14.

B. Human driving comparison

Different driving scenes were selected from the dataset.
For each of them, one of the vehicles present on the scene
was selected as the Vehicle of Interest (VoI), which was
used as baseline to evaluate the performance of the TG. The
criteria used to select the driving scenes were: (i) the VoI
must start at an initial distance larger than 30m from the
roundabout, (ii) there must be no vehicle between the VoI
and the roundabout, (iii) the VoI of the dataset must merge
into the roundabout without stopping on the yielding line.
Once the traffic scenes were selected from the dataset, they
were recreated on the simulator and the TG was tested using
different configurations of the weights for the merit function.
Five different configurations were tested, each one the first
four prioritize a different DV (see section II-A) over the others,
while the fifth one has a balanced configuration. The test runs
of the TG were compared to the human driving from the
dataset using six performance indicators presented on table
IV.
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Fig. 15. Time evolution of the traffic scene in rdb4. (a) traffic status at t = 1s.
(b) traffic status at t = 9s (c) traffic status at t = 13s (a) traffic status at
t = 19s.

TABLE IV
PERFORMANCE INDICATORS.

Parameter Formula

Longitudinal Acceleration max(|γx(s)|)

Longitudinal Jerk ȷx(s)

Lateral Acceleration max(|γy(s)|)

Lateral Jerk ȷy(s)

Risk to collision RTTCE +max(RTTCE)

Travel time tN

All the performance indicators are computed offline using
the resulting trajectory of the vehicle and the position of
the obstacles during the test run. The longitudinal/lateral
acceleration indicators measure the maximum acceleration
value during the test run; the longitudinal/lateral jerk indicators
measure the average value of the jerk. To calculate the risk to
collision indicator, the Risk from Time to Close Encounter
(RTTCE) metric proposed in [25] is computed during the
complete trajectory with respect to the OV present on the
scene. The considered metric uses a sum of the maximum risk
value over the trajectory and the average risk value. Finally,
the travel time indicates how much time the vehicle needed to
get to the goal position.

In the first selected traffic scene, extracted from rdb4, the
VoI starts 49m away from the roundabout with an initial speed
vvoi = 39km/h, then it slows down as it gets closer to
the roundabout and it merges between two vehicles without
stopping on the yield line. Fig. 15 shows in 4 snapshots the
evolution of this traffic scene. The total distance completed by
the VoI (black vehicle) is 102m.

The speed profiles of the five tests on autonomous mode and
the human-driven test are shown in Fig. 16. It can be seen
that both the human and the TG reduce the traveling speed
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Fig. 16. Speed profiles for the test runs on the traffic scene of rdb4.
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Fig. 17. Final paths for the test runs on the traffic scene of rdb4.

when approaching the roundabout, maintaining afterwards a
low speed from t ≈ 6s, to finally increase the speed to merge
into the roundabout at t ≈ 11s. In the case of the TG the
EV keeps a constant speed before merging, while the human
pilot keeps slowing down as he gets closer to the yield line.
When the merging maneuver is performed, the acceleration of
the human pilot is higher than the acceleration of the TG test
runs, as it has to start from a lower speed.

The complete paths followed by the EV and the VoI during
all the test runs on the scenario rdb4 are shown on Fig. 17.
It can be seen that the paths of the TG are very similar
to the human driver’s path during the merging maneuver of
the roundabout, but once inside the roundabout ring, the TG
made wider curves than the human, reducing thus the lateral
acceleration.

The six performance indicators from the TG test runs and
the human-driven test run are shown in the radar plot on
Fig. 18. The definition of the KPIs of table IV implies a
smaller-is-better (SiB) standard. In other words, the closer
to the center of the radar, the better the performance under
consideration. In general, the performance of the TG with
the different weight configurations is similar to the human
pilot’s. Regarding the longitudinal acceleration indicator, the
TG showed better performance on all the configurations; the
reason for this is that the largest values of the longitudinal ac-
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Fig. 18. Performance indicators for different test runs on traffic scene of
rdb4.

celeration were presented on the initial braking at t = [0s, 6s],
and during this period of time, the human pilot applied more
deceleration than the TG. In terms of the lateral acceleration,
the TG kept its speed lower and made wider curves than
the human pilot, obtaining a more comfortable trajectory, but
penalizing the travel time, where the human pilot presented
better performance. Indeed, it reached the destination 0.68s
faster than the fastest test run of the TG (configuration 4). In
the case of the longitudinal jerk, the human pilot outperformed
the TG, probably due to the transition from the initial braking
status to the speed restriction on t ≈ 6s, where the TG
changes its acceleration in a more sudden way than the human.
Regarding the RTTCE indicator, the highest risk measure is
obtained when the EV is about to merge into the roundabout.
Since the TG started the merging maneuver before the human
pilot, and also at a higher speed, it exhibited higher risk values.

Fig. 19 shows the gap distances of the test runs regarding
the leader and the lag vehicles during the merging maneuver.
This gaps are computed from the moment the vehicle crosses
the yield line until it gets completely into the roundabout-ring.
For this traffic scene, the average gap with respect to the leader
vehicle while merging was 24.1m and the average gap with
respect to the lag vehicle was 23.2m. The TG kept larger gaps
from the leader vehicle than the human pilot on average, being
the largest gaps for configurations 1, 2 and 3 (which prioritized
comfort and safety). The gaps with respect to the lag vehicle
were smaller for the TG test runs than for the human-driven
test run, being the smallest gap for the configuration 1 (20.3m).

The second scenario was located on rdb7. The TG was also
tested in this scenario with five configurations for the weights
of the decision variables of the merit function. In this case,
the VoI starts 31m away from the roundabout and its initial
speed is vvoi = 35km/h. It also slows down as it gets closer
to the roundabout and then it merges between two vehicles,
but the gap between the vehicles on the roundabout during
the merging maneuver is narrower than the gap of the first
scenario. Fig. 20 shows the evolution of this traffic scene (the
VoI is plotted in black). At t = 1s (Fig. 20a), the VoI is
approaching to the roundabout with high traffic. At t = 4s
(Fig. 20b), the VoI reduces its speed and is waiting for a
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Fig. 19. Lead and lag gaps for different test runs on traffic scene of rdb4.
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Fig. 20. Time evolution of the VoI on a merging scene in rdb7. (a) Traffic
status at t = 1s. (b) Traffic status at t = 4s (c) Traffic status at t = 8s (d)
Traffic status at t = 13s.

possible merging gap. At t = 8s (Fig. 20c), the VoI is merging
after the magenta vehicle has passed the intersection point and
before the cyan vehicle reaches that point. Finally, at t = 13s
(Fig. 20d) the VoI is completely merged into the roundabout.
The total distance traveled by the EV in this scenario is 132m.

The speed profiles of the five TG test runs and the human-
driven test run are shown in Fig. 21. It can be seen that the TG
reduces the speed before the human pilot when approaching to
the roundabout (due to the value of sr), then, the TG maintains
a traveling speed vego = 6km/h from t ≈ 4s while the human
pilot reduces its speed down to vego = 2km/h during this
lapse. Both agents (TG and human pilot) increase their speed
to merge into the roundabout at t ≈ 11s. After the merging is
completed, the human pilot keeps increasing its speed while
crossing the roundabout, while the TG reduces its speed at
t ≈ 15 to guarantee comfort constraints.

The complete paths followed by the VoI and the EV and
during all the test runs on the rdb7 are shown on Fig. 22. The
paths generated by the TG were again similar to the human
driver’s path around the merging point of the roundabout. In
addition to that, the TG made also wider curves than the
human before exiting the roundabout.

Fig. 23 shows the comparison between the TG test runs
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Fig. 21. Speed profiles for different test runs on traffic scene of rdb7.
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Fig. 22. Paths for different test runs on traffic scene of rdb7.

and the human driven test run for the scenario of rdb7. In
general, the performance of this human pilot was slightly better
than the TG performance. The high values of the longitudinal
acceleration of the TG are due to the initial conditions of the
experiment; since the EV starts 31m away of the yield line, the
TG has to brake firmly in order to get to vr before reaching
sr. Under normal operation conditions, where the TG is in
control of the EV since it starts to move, it would have started
to brake before in order to keep the longitudinal acceleration
bounded. In spite of this particular situation, the difference
between the maximum longitudinal acceleration between a
human and the TG for configuration 5 was only 0.16m/s2.
For the longitudinal jerk, it can be observed that the human
pilot performs a smoother driving, reducing its speed before
merging at t = 8s. This transition is sharper with the TG,
creating higher jerk values. Regarding the lateral acceleration,
the human pilot obtained a lower value than the TG, but it was
only 0.25m/s2 in average. The TG reduced its speed once
on the roundabout to meet the lateral acceleration restriction,
while the human pilot was able to follow a path that allowed
him (her) to keep accelerating inside the roundabout, getting
to the destination 2.16s faster than the fastest configuration of
the TG. For this scenario the human pilot started accelerating
before the TG to perform the merging maneuver. As a result,
the risk of collision with the leader vehicle (magenta on Fig.
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Fig. 23. Performance indicators for different test runs on traffic scene of
rdb7.
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Fig. 24. Lead and lag gaps for different test runs on traffic scene of rdb7.

20c) increased, leading to a worse performance on the RTTCE
for the human pilot.

The average gap values for the merging maneuver on
the second driving scenario are shown on Fig. 24. For this
scenario, the gaps with respect to the leader vehicle were
higher for TG test runs (18.93m avg.) compared with the
human pilot’s (17.92m). Conversely, the gaps with respect to
the lag vehicle were lower for the TG (12.56m avg.) compared
to the human (14.99m). Note that although the gap values to
the lag vehicle were smaller, they were still higher than the
minimum safety gap obtained from (4) for the lag vehicle
(9.28m for a speed of 11.3 km/h). This tight gap values show
that the TG is capable of performing merging maneuvers in
crowded scenarios.

C. Testing on multiple modified scenarios

In order to test the TG in several situations, a new set of
25 driving scenarios was created from each of the testing
scenarios of section IV-B. The navigation speeds of all OV
on the original driving scene were randomly modified using
a normal distribution with a standard deviation σ = 8 km/h.
Then, the TG was tested on each scenario using the config-
uration with balanced weights of the DV. These variations
allow the EV to deal with a variety of situations, such as
merging before OVs at different speeds, performing a merging
maneuver without reducing the speed, or yielding because
merging before another vehicle is not safe.
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Fig. 25. Speed profile along the path for the TG test runs on the modified
scenarios of rdb4.
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Fig. 26. Density graph of the ego-vehicle acceleration during the TG test
runs on the modified scenarios of rdb4.

The speed profiles along the path for the different test runs
on the modified versions of the rdb4 scenario are shown on
Fig. 25. As waiting times vary from one experiment to another,
data is plotted along the path (and not versus time), improving
thus the readability of the figure. The human driven test run
from the original dataset is plotted only as a reference for the
reader (as a dotted cyan line) and the position of the yield line
is also plotted on the figure (black dashed line).

All the experiments were handled safely. The TG performed
a merging maneuver without stopping on 19 out of the
25 scenarios, two of which started the merging maneuver
at vego ≈ 13km/h. When the merge-after maneuver was
executed, the limitation speed vr was reached at 35m in most
of the cases, as expected, since the initial distance to the
yield line is 49m and the restriction distance sr = 14m. In 6
specific scenarios the EV stopped before the yield line at a safe
distance from it; the minimum and maximum stop distance to
the yield line were dstop = [5.7m, 8.1m].

Fig. 26 shows a heat map of the longitudinal and lateral
accelerations of all test runs. It can be observed that the
accelerations were bounded to the design limits of Table III.
Note that the zone around γx = −2m/s2 , γy = 0m/s2

is repeated at the beginning of all the experiments when
approaching to the roundabout, that is why it has a large
density value.

The speed profiles along the path for the 25 test runs on the
modified versions of the rdb7 scenario are shown on Fig. 27.
The human pilot run is plotted as a reference for the reader
(dotted cyan line) and the position of the yield line is plotted
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Fig. 27. Speed profile along the path for the TG test runs on the modified
scenarios of rdb7
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Fig. 28. Density graph of the ego-vehicle acceleration during the TG test
runs on the modified scenarios of rdb7.

as a black dashed line at 45m.
All test runs using the TG slow down before the human due

to the restriction distance set by design. In this case, the TG
stopped on the yield line on 16 out of the 25 scenarios. And
it was able to merge into the roundabout without stopping on
the remaining 9. This can be explained because the selected
scenario of rdb7 had more vehicles (17 total) than the scenario
of rdb4 (10 total), leading to tighter merging gaps and a more
challenging merging scenario. Despite this, all the scenario
variations were safely resolved, being the minimum and max-
imum stop distance to the yield line dstop = [3.01m, 6.94m].

Fig. 28 shows the density graph of the longitudinal and
lateral accelerations of all test runs of rdb7. Again, the
accelerations were bounded to the design limits of Table III.
Nevertheless, in this scenario the accelerations were more
spread than in the previous one.

D. Comparative experiments

The Fictitious Acceleration based Merging Strategy (FAMS)
described in this work was compared to the strategy proposed
in [2], where virtual instances of the OVs and their corre-
sponding occupancy intervals are used for finding a safe gap
during a roundabout insertion maneuver. This technique was
selected to perform the comparative for two main reasons:
(i) it was validated with realistic traffic with multiple OVs
on roundabouts (which is the scope of this paper); and (ii)
its speed profile generation algorithm takes into account the
state of the OVs. This technique will be referred to as VIIM
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(Virtual Instance based Insertion Maneuver) on the remaining
of this document. The parameters involved in the computation
of the merging gap (A,α, dsafe) were selected heuristically
to guarantee a safe merging gap in all the driving scenarios
where the algorithm was tested without significantly impacting
on its merging capacity. The parameter vn, which defines the
maximum travel speed, was set so that the lateral acceleration
is bounded while driving through the roundabout. (table V)
shows the numerical values of all these parameters).

TABLE V
CONFIGURATION PARAMETERS OF VIIM STRATEGY.

Parameter Value Units
A 8 N.A.
α 0.5 N.A.
dsafe 10 m
vn 25 km/h

Both algorithms were tested in the same 25 driving sce-
narios of rdb4 presented in section IV-C, but some initial
conditions were modified to allow the merging algorithms to
approach the roundabout without any influence of the EV
initial position. More specifically, the initial speed of the
EV and the distance to the roundabout were modified to
vego,0 = 15 km/h and 77m, respectively. Fig. 29 shows the
speed, the longitudinal acceleration and the lateral acceleration
along the path of each algorithm for all the experiments. The
experiments of FAMS algorithm are plotted in blue, while
experiments of VIIM algorithm are plotted in orange.

In Fig. 29a it can be seen that the speed profiles of FAMS
algorithm were more consistent during the tests; they start to
brake around 40m before the yielding line until vego ≈ vr,
where they decide whether to merge or to yield into the
roundabout. VIIM algorithm approaches the roundabout at
nominal speed vn and starts to brake approximately at 15m
before the yielding line if it detects the gap is not large enough,
or, in case the gap is safe, it merges at faster speeds than
FAMS algorithm. This is a significant difference, since having
a low speed before merging allows to perform a yielding
maneuver safely in case a new OV is suddenly detected.
Once the EV is inside the roundabout, the FAMS algorithm is
slower than VIIM algorithm, as the first one takes into account
different comfort restrictions, while the latter drives at ẋlead

if OVlead ̸= ∅ or at vn otherwise. Regarding the longitudinal
acceleration, it can be observed that the FAMS algorithm
breaks at ẍego ≈ −1m/s2 to approach the roundabout; then, if
it decides to yield, it brakes at ẍego ≈ −2.3m/s2. In the case
of VIIM algorithm, it starts to brake at ẍego ≈ −2m/s2 when
yielding, getting close to ẍego ≈ −4m/s2 before stopping.
The positive acceleration to merge into the roundabout is
similar in both algorithms. Regarding the lateral acceleration,
it can be observed that it is more contained for the FAMS
algorithm due to the comfort restrictions of Λ; however, VIIM
algorithm presented higher lateral accelerations when crossing
the roundabout because the only restrictions were vn and
ẋlead.

When approaching the roundabout, the EV always reaches
a point where it has to decide to merge without stopping or to
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Fig. 29. Comparison of the EV dynamic variables during the experiments
of FAMS and VIIM algorithms. (a) Longitudinal speed. (b) Longitudinal
acceleration. (c) Lateral acceleration
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yield. If the EV stops completely before merging, it is more
difficult to find a safe gap to merge due to the large relative
speeds with respect to the vehicles driving on the roundabout
ring. As a result, the waiting times may be very large in high-
traffic scenarios. Fig. 30 shows the waiting times on the stop
line (once the EV has yielded) for both algorithms in each
driving scenario.

One of the main differences between FAMS and VIIM
algorithms is that the first one generates a speed profile that
may accelerate to keep a safe gap with respect to OVlag, while
the latter considers a constant speed on both vehicles to decide
if the gap is safe enough to merge. The possibility to accelerate
allowed the FAMS algorithm to merge without stopping in 14
out of 25 experiments, while the VIIM algorithm performed
this maneuver only 6 out of 25 experiments. This feature
also affects the waiting times while stopped, since the average
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Fig. 31. Performance indicators for the different merging strategies on the
modified scenarios of rdb4.

waiting time for the FAMS algorithm (5.95s) was smaller than
the average waiting time of VIIM algorithm (8.21s).

Fig. 31 shows the performance indicators for all the exper-
iments carried out with each algorithm. It can be observed
that the FAMS algorithm presented a better behavior on the
four comfort-related indicators (accelerations and jerks). This
difference can be explained by the differences in traveling
speed of each algorithm, as discussed in the analysis of Fig.
29. Regarding the RTTCE indicator, both algorithms presented
similar performances, with average values of 0.51 and 0.54
with VIIM and FAMS, respectively; these values of RTTCE
represent no risk during the merging maneuver and are similar
to the risk magnitude of the human drivers analysed in section
IV-B. Respecting the travel time indicator, the VIIM algorithm
achieved the fastest experiments when it was able to merge
in the roundabout without stopping, presenting an average
time of tV IIM,merge = 28.9s for these experiments versus
an average time of tFAMS,merge = 37.4s for the FAMS
algorithm. However, the travel time for the experiments that
yielded on the stop line was more reduced with FAMS than
with VIIM, obtaining average times of tFAMS,yield = 38.1s
and tV IIM,yield = 40.5s, respectively.

V. CONCLUSION

A speed profile generation algorithm to merge into round-
abouts was proposed in this paper. The proposed strategy prior-
itizes the time-efficient merging maneuvers, while maintaining
safety and comfort constraints.

The algorithm was validated on a SiL-simulation environ-
ment where the driving scenes were recreating open datasets.
This setup allows to reproduce naturalistic environments,
while guaranteeing that all the surrounding driving agents can
dinamically adjust their behavior according to the evolution of
the TG behavior.

An evaluation framework was implemented to evaluate the
performance of the TG and compare its results with human
driven data under the same environment. The comparison
showed that the TG was able to handle real-traffic situations
similarly to human drivers on different performance indicators

like maximum longitudinal and lateral accelerations, average
jerk values, time to close encounter with OV or travel time.

To assess the robustness of the merging algorithm under
different driving conditions, modified versions of the round-
about scenarios were built. The system was able to handle
safely all driving scenarios and was able to maintain the
comfort constraints. Lastly, the performance of the algorithm
was compared with another state-of-the-art insertion maneuver
strategy.

The merging-before speed profile generation proposed in
section III-A may be easily applied to other merging scenarios
an AV may encounter, like ramp merging on highway or lane
changing with traffic. Future work will be oriented towards
the deployment and evaluation of the TG performance in these
driving situations, both in simulation and with a real automated
car.

ACKNOWLEDGMENTS

This work has been partially funded by the Spanish Ministry
of Science and Innovation with the National Project NEW-
CONTROL (PCI2019-103791), the Community of Madrid
through SEGVAUTO 4.0-CM Programme (S2018-EMT-4362),
and by the European Commission and ECSEL Joint Under-
taking through the Project NEWCONTROL (826653).

REFERENCES
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