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Abstract— This work presents a maneuver planner for au-
tomated vehicles, seamlessly integrated with a motion planner,
that is able to make tactical decisions to safely navigate in
urban environments. The proposed maneuver planner is able
to select the most suitable target lane for the ego-vehicle
and to manage different regulatory signals like right of way,
must stop or pedestrian crossings. The integration with the
motion planner allows to select the current maneuver after
exploring a reachable set of trajectories, which brings flexibility
to the system in complex and dynamic driving scenarios. The
architecture was validated on a real vehicle in two urban
scenarios with other traffic agents: an intersection with a
pedestrian crossing and an overtaking scenario on a two-way
road.

I. INTRODUCTION

Autonomous Driving Systems (ADS) must constantly
make tactical decisions in order to be efficient, specially in
urban scenarios. These decisions may include: changing to
a more convenient lane given a global route, stopping on a
yielding line on an intersection, waiting for a pedestrian to
cross the road or taking the next exit ramp on a highway.
To achieve these kind of complex tasks, a two-level hier-
archical architecture formed by a maneuver planner and a
motion planner has been widely deployed [1]. This modular
architecture has different advantages, like higher flexibility
when testing different algorithms, easier maintenance due
to the independence of the modules, and better scalability
[2]. The tactical or maneuver planning, according to [3],
may be classified into three categories: (i) rule-based tactics,
which consider speed limits, working zones, stop signs or
intersection precedence handling; (ii) route-based tactics,
which consist of choosing the lane in order to meet global
routing requirements; and (iii) maneuver-based tactics, which
decide when and how to yield, follow or overtake other
agents.

In this work it is proposed a maneuver planner that com-
prises both route-based tactics and maneuver-based tactics.
The maneuver planner is integrated with a motion planning
system, which explores a set of reachable trajectories and
the resulting trajectory set contributes on the decision mak-
ing process. This architecture (depicted on Fig. 1) brings
flexibility to the ADS and deals, as it is not limited by pre-
designed maneuver-based tactical rules, and is therefore able
to efficiently handle unforeseen situations [3].

Most of the Decision Makers (DM) for autonomous
driving described in the literature focus on one kind of
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scenario, i.e. city intersections, lane-changing on a highway
or overtaking maneuvers. In [4], the authors propose a rule-
based DM to solve intersections by finding conflicting points
between the Ego-Vehicle (EV) path and the Other Vehicles
(OV) present in the scene, to define a drive/stop policy. In
[5] a motion planner module generates speed profiles based
on human drivers data, while the DM selects the maneuver
that minimizes the risk of collision. On [6] the authors
implemented a Finite State Machine (FSM) which varies the
speed profile of the EV according to its current state in order
to solve T-intersections. Finally, in [7], the proposed DM also
manages T-intersections, only this time using a discrete event
handler with limited visibility and no communications with
other OVs.

Alternatively, some DM handle only lane-changing ma-
neuvers. For example, in [8] it is presented a DM based
on an FSM to perform lane changes by taking into account
the global route as well as the current driving environment.
[9] propose to perform overtaking maneuvers on freeways
using a two stage architecture, consisting on a lane-change
decision trigger, based on a Radial Basis Function (RBF)
neural network, and a hierarchical state machine to complete
the maneuver. This kind of systems show good results in the
environments for which they were designed, but may struggle
to solve different urban scenarios.

There are some works that implemented a DM using
neural networks [10] [11] [12] [13], but this kind of systems
rely strongly on the data quantity and quality and have a
high training cost. In addition to that, their black box nature
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Fig. 1. Complete ADS architecture.



makes their functional safety compatibility [4] and semantic
interpretation [14] challenging.

The maneuver planner proposed in this work selects the
target lane and establishes a number of restrictions according
to the regulatory signals present in the scene. A regulatory
signal establishes a set of rules that must be followed by
the traffic agents in the road; some examples are must-
stop signals, pedestrian crossings or right-of-way signals on
intersections. Then, the motion planner generates a set of
reachable trajectories Γ, which is used by the maneuver
planner to evaluate the feasibility of the proposed maneuver,
and to change it if necessary. Also, different kind of ma-
neuvers like merging or yielding into a roundabout may be
executed depending on the reachable trajectories. A detailed
description of the trajectory generator is provided in section
II-D. The majority of decisions on city and highway driving
scenarios can be covered using this approach, since (i) most
of them can be decomposed on basic driving modes like lane
changing or stopping on yielding lines [2]; (ii) the integration
with the motion planner provides a necessary feedback in
dynamic environments to determine whether the maneuver
is feasible to the EV or not.

The main contributions of this work are:

• A hybrid decision making architecture that allows to
perform tactical decisions using a seamlessly integrated
maneuver planner and trajectory generator, which pre-
vents conservative behaviors.

• The proposed architecture is not designed to handle only
a specific type of scenario but it can handle multiple
types of urban scenarios by combining lane changes
and regulatory signal handling on a tactical level.

• The system was tested on a real vehicle on different
urban scenarios with other traffic agents.

The outline of the paper is as follows: section II describes
the maneuver planner in detail, section III shows the results
in real-life scenarios and section IV presents some conclud-
ing remarks.

II. MANEUVER PLANNER

Fig. 2 depicts the architecture of the maneuver planner
and its integration with the trajectory generator. This system
uses the perception information Ω and the global route φ
to calculate a set of way-points ω, a traffic-regulation state
S and the identification number id of a potential regulatory
signal. The trajectory generator computes the trajectory set
Γ, and provides the number of trajectory candidates τ ∈ Γ
considered valid for the current scene (Nvalid). A trajectory
τ is considered valid if it does not leave the road at any
moment and it does not lead the EV to a collision with other
traffic agents. If Nvalid < η, (being η the minimum number
of valid candidates to consider a maneuver as feasible) during
a lane change maneuver, the maneuver planner cancels the
maneuver, updates the target corridor and re-calculates ω, in
order to guarantee a feasible maneuver.
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Fig. 2. Maneuver planner scheme and its interaction with the trajectory
generator.

A. Navigation corridors

The first task performed by the maneuver planner is to
identify the set of available navigation corridors ζ. Each
navigation corridor ζi is a reachable lane for the EV, given
its location on the lanelet2 digital map [15]. This type
of map provides two layers of information: physical and
topological. The physical layer contains geographic infor-
mation like borderlines, centerlines or location of elements,
while the topological one contains the relation between road
elements in a graph network. ζi is computed by finding the
lanelet(s) where the ego-vehicle is located. Next, a graph
search is performed in the topological layer of the map to
obtain a lanelet sequence. Each corridor is described with
three different types of information: routing, topological and
traffic. Regarding the routing information, ζi stores the id of
the lanelets, the distance to the next exit, and the compliance
with the global route (a boolean value that indicates if the
corridor is contained in the global route or not). Concerning
the topological information, ζi contains the centreline and
the borderlines of the lane. The traffic information stored in
ζi is composed of the speed and position of the closest lag
and lead vehicles.

B. Selection of the target corridor

The target corridor ζt is selected using a lane-change
model proposed in [16]. It proposes a utility function that
evaluates mandatory and discretionary metrics for each cor-
ridor, such as average speed, next-exit distance or relations
with respect to the OVs. The utility value U is calculated for
each corridor ζi using this expression:



U iζ = βiζ −C1Di
ζ +C2 Siζ +C3 ∆X lead,i

ζ +C4 ∆Slead,iζ

− C5 δtgδcl,iζ + C6 δcl,iζ − C7 ∆LCiζ

+ βpath,iζ

[
dexit

]−C8

− C9 δne∆Exitiζ

− αiζυn − Cop δop,iζ (1)

where the variables definition is as follows: βiζ is a constant
depending on the right-to-left location of the corridor; Di

ζ

and Siζ are the density of vehicles and the average speed,
respectively, ∆X lead,i

ζ and ∆Slead,iζ are the separation and
relative speed with respect to the lead vehicle, respectively;
δcl,iζ is a boolean variable that is non-null if ζi is the current
lane of the EV, while δtailgate is activated if the EV has
a tailgate vehicle; ∆LCiζ is the number of lane changes
required to get to ζi; βpath,iζ is the plan impact coefficient,
which increments with the number of lane changes required
to reach the next exit on the global route, while dexit is the
distance to that exit. δne is a boolean variable with value 1
if the driver intends to take the next exit and 0 otherwise;
∆Exitiζ is the number of lane changes required to go from
ζi to the exit lane; The term δop,iζ indicates if ζi is a two way
lane and may be used by the EV to perform an overtaking
maneuver. Notice that this term, and its coefficient Cop were
not included on the original model and were included in this
work to allow the ADS to perform overtaking maneuvers on
two-way roads. The weighting coefficients Ci, i ∈ 1...9 of
each variable is defined in [16].

Once the utility of ζ is computed, the probability of being
selected as ζt is computed for each ζi using the multinomial
logit model:

P (ζt = ζi) =
exp(U iζ)∑

j∈|ζ| exp(U
j
ζ ))

(2)

The maneuver planner sets as ζt the corridor with the
largest probability that meets two requirements: (i) it has a
valid gap acceptance and (ii) all its lanelets are included in
the global route. The gap acceptance of an adjacent corridor
depends on the lead gap ∆X lead (space between the lead
vehicle and the EV) and the lag gap ∆X lag (space between
the EV and the lag vehicle). Both values have to be greater
than a corresponding critical gap to be valid. The models to
obtain the gap acceptance of a corridor are detailed in [16].

C. Regulatory signal handling

The maneuver planner is able to handle three types of
regulatory signals: Must Stop (MS), Right of Way (RW) and
Pedestrian Crossing (PC). The MS signals are formed by a
yielding lanelet and a Yielding Line (YL). In order to comply
with this kind of signal, the EV must stop completely before
reaching the YL. The RW signal is formed by a YL, one or
more yielding lanelets and one ore more priority lanelets. For
this type of signal, the vehicle that gets into the intersection
from a yielding lanelet has to stop on the YL if there is
another vehicle on the priority lanelet, unless it is able merge

before that vehicle in a safely manner. This type of signals
are commonly used on crossroads or roundabouts. The PC
signal is formed by a crossing zone, one or more YL and one
or more yielding lanelet. In this case, if there is a pedestrian
on the crossing area, the vehicle must stop before the YL and
it must remain stopped as long as there is a pedestrian on
the road. A regulatory signal ψr ∈ Ψ ∀ r = {0, ..., R− 1},
with Ψ being is the finite set of R regulatory elements on the
global route, contains different information like the unique
id, the associated yielding lines, the lanelets of interest or
the crossing area polygon; all of this data is embedded on
the digital map. Fig. 3 depicts a driving scenario with two
regulatory signals ψ1 and ψ2. On the one hand, the signal ψ1

is a RW signal with one yielding lanelet, which is highlighted
in red, two priority lanelets, which are plotted in green and
a yielding line plotted in yellow. On the other hand, ψ2 is a
PC signal with two yielding lanelets, two yielding lines and
a crossing zone for pedestrians. The crossing zone includes
also the sidewalk and not only the road, so that the EV is
forced to stop if there is a pedestrian waiting to cross.

A finite state machine with four possible states S =
{Go, Y ield, T ry,Aware} is used to comply with the afore-
mentioned regulatory signal behaviors. The current state Sk
is updated taking into account if there is a regulatory signal
ψt on ζt and also the gap distances with the OVs of the traffic
scene. Fig. 4 depicts the state diagram of the FSM proposed
to handle regulatory signals. The initial state is S0 = Go, and
the future states are obtained according to the state-change
conditions defined in Table I. When the state Sk is updated
from any other state to Sk+1 = Go, the regulatory signal ψt

is omitted and it is not taken into account again until it is
completely crossed. This omitted signal will be referred to
as ψo. Each signal ψr is described using three variables: tprψ
defines the type of signal, idrψ is the unique id on the digital
map, and gtψ is the distance from the EV to the yielding line.
In case tprψ = PC two extra variables are used: tzf tψ is the
time the crossing zone has been free of pedestrians, being
set to 0 when a pedestrian is detected on the crossing zone;
and trf tψ , which is the time the road has been free while the
EV is stopped on a PC.
do is a design parameter that defines the minimum separation
between the EV and ψt before it can be omitted. dc is another
design parameter that establishes the minimum acceptable
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Fig. 3. Regulatory signals components on an urban scenario.
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TABLE I
STATE TRANSITION CONDITIONS FOR THE REGULATORY SIGNAL FSM.

Name Definition
cgt tptψ = RW ∧ idtψ ̸= idψo

ctg gtψ < do ∧ ∆Xlead,t
ζ > dc

cga tptψ = PC ∧ idtψ ̸= idψo

cag gtψ ≤ 0

cay tzf tψ = 0

cya tptψ = PC ∧ tzf tψ ≥ to1 ∧ gtψ > do

cgy tptψ =MS ∧ idtψ ̸= idψo

cyg

(
tptψ =MS ∧ gtψ < do ∧ vego = 0 ∧ ∆Xt

ζ > dc
)
∨(

tptψ = PC ∧ gtψ < do ∧ trf tψ ≥ to2
)

gap with respect to the leader vehicle to cross a yield line.
to1 and to2 are different times thresholds which are used to
update Sk when a PC signal is found.

When the current traffic-regulation state is Sk = Go, if
tptψ = RW , the new state is Sk+1 = try. In this state, the
trajectory generator tries to find a feasible speed profile that
allows the EV to merge before a vehicle with higher priority,
or to stop on the YL if it is not possible. If Sk = Go and
tptψ =MS, then Sk+1 = yield, leading the speed profile of
each path candidate to always stop before reaching the YL.
Lastly, if Sk = Go and tptψ = PC then Sk+1 = aware; in
this state, the trajectory generator reduces the speed before
crossing the signal. If sk = aware and there is a pedestrian
detected on the crossing zone, then Sk+1 = yield, and the
EV will stop before the YL.

D. Integration with the trajectory generation

The trajectory generator creates N trajectory candidates
and selects the best of them using a merit function (see [17]
and [18] for more details). The paths are created using quintic
Bézier curves starting from the current EV trajectory and
ending on different way-points ωj located on the centreline
of ζt. The speed profile for the candidates is generated taking
into account a set of comfort constraints, the position of the
other traffic agents and the potential traffic regulations that
may be imposed by ψt. A candidate is considered valid if
it is collision free and it does not occupy any space outside
the road.
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Fig. 5. Merging into a roundabout. (a) Set of way-points ω and path
candidates. (b) Speed profiles for the candidates.

Fig. 5a shows the way-points ω and the path candidates
generated for a roundabout scenario where Sk = try and
giψ = 34m. Fig. 5b depicts the speed profiles generated
for each valid candidate. In this case, some speed profiles
stop before reaching the yielding line and other speed
profiles merge into the roundabout between the green and
the magenta vehicles without stopping. The final maneuver
is therefore chosen by the trajectory generator, following the
candidate selection described in [18].

The number of valid candidates created by the trajectory
generator during a lane change maneuver is used as a
feedback indicator by the maneuver planner, and, in case
there is not at least η valid candidates, ζt is updated to cancel
the lane change and to keep the current lane.

III. EXPERIMENTAL RESULTS

The complete ADS was implemented on a real vehicle in
order to test the maneuver planner architecture on two sce-
narios with real traffic agents. The instrumented vehicle is a
fully automated Citröen DS3 with different on-board sensors
(see a detailed explanation of the experimental platform in
[19]).

Two scenarios were selected to test the system. In the
first one, the EV and two other vehicles (OV1, OV2) are
approaching an intersection from different roads. The EV
has to perform a left turn and there is a PC signal after the
intersection, where a pedestrian (P) will cross when the EV
approaches the signal. The setup of this scenario is depicted
in Fig. 6a. Fig. 6b shows a capture of the real experiment
on the testing track.

In the second scenario the EV has to overtake another
vehicle (OV1), while on the opposite lane there is an
oncoming vehicle (OV2); hence, the EV has to wait until
the opposite lane is free before performing the overtaking
maneuver. Fig. 7a shows the setup of this scenario and Fig.
7b shows the status of the vehicles at a specific moment
during the experiment. Note that to increase the visibility of
the EV and therefore be able to detect OV2 well in advance, a
collective perception architecture was implemented between
the EV and OV1 [20].

The configuration parameters used in the experiments for
the state transition conditions given in table I are shown in
Table II.
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Fig. 6. Intersection experimental scenario. (a) Experiment setup. (b) Traffic
status during the real experiment.
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(b)

Fig. 7. Overtaking scenario. (a) Experiment setup. (b) Traffic status during
the real experiment.

TABLE II
CONFIGURATION PARAMETERS FOR TESTING.

Parameter Value Units
do 9 m
dc 7 m

to1 3 s
to2 1 s

By using these parameters, the EV will consider to discard
a regulatory signal when it is closer than 9m from the
corresponding yielding line. The distance with respect to
a leader vehicle has to be greater than 7m to consider
discarding a stop or a RW signal. Also, the EV will start
to drive over a PC signal if the road has been free for over
1 second.

The complete video demonstrator for the
intersection scenario can be accessed in
www.youtube.com/watch?v=iOn0VP7fZ3A, while
the one for the overtaking scenario is accessible in
www.youtube.com/watch?v=0F4ov4ltFE4

A. Intersection scenario

In this scenario the EV has to drive over two different
regulatory signals before reaching the destination. The first
of them (ψ0) is a RW signal, where the EV is approaching
from the yielding lane so that OV1 has higher priority. The
second signal (ψ1) is a PC signal with one person on the
crossing area. Fig. 6a shows the yielding line of ψ0 as a red
line and the crossing zone of ψ1 as a blue rectangle.

The evolution of Sk and the EV speed during the exper-
iment are plotted in Fig. 8. To provide a higher context to
the figure, three events were highlighted using vertical dotted
lines: the crossing of the yielding line of ψ0, the moment
where the road over the PC signal has been free for over t1
seconds after the EV has stopped, and the crossing of the
yielding line of ψ1.

The EV detects the RW signal ψ0 immediately after it
starts (see Fig. 9a), leading to a state change from Sk = Go
to Sk+1 = try. While in the latter state, the trajectory
generator did not find a feasible trajectory to merge before
OV1 reached the intersection, so the EV stopped on the
yield line during the interval t = [6.8s, 13s] (Fig. 9b). The
condition ctg was triggered at t = 13s because OV1 did not
intersect the EV trajectory any longer, hence ∆X lead → ∞.
At that moment Sk = Go and idψo

= id0ψ and, by doing
this, this signal is omitted until its YL is completely crossed.
Since ψ0 is no longer taken into account, the next signal ψ1

is detected (the PC signal), the state changes to Sk = Aware
and then to Sk = yield because there is a pedestrian located
in the crossing area. The EV starts to move and crosses the
first yielding line of ψ0 at t = 17.1s (Fig. 9c) and yields
before the yielding line of ψ1. The EV maintains the yield

0 5 10 15 20 25 30 35 40

Time (s)

Yield

Aware

Try

Go

0

2

4

6

8

10

12

14

16

18

S
p
e
e
d
 (

k
m

/h
)

1          t          =crossed
0          

trf          1 crossed
1          

Fig. 8. Traffic-regulation state S and speed profile all along the intersection
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Fig. 9. Time evolution of the intersection traffic scene. (a) traffic status at
t = 1s. (b) traffic status at t = 13s (c) traffic status at t = 17.1s (a) traffic
status at t = 27.1s.
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Fig. 10. Distance to the yielding lines of ψ0 and ψ1 during the intersection
scenario.

decision until t = 27.1s, when the pedestrian exits the lane,
so that trf1ψ ≥ t1, triggering the condition cyg (Fig. 9d).
From that moment, and until the end of the experiment, the
signal status is Sk = Go.

The scenario was correctly handled and the behavior was
appropriate in both signals, keeping at all times a safe driving
profile. Fig. 10 shows the distance to the yielding lines of
ψ0 and ψ1. It can be seen that the EV stopped at a distance
of 5m in both cases.

B. Overtaking scenario

In this scenario, the EV has to safely overtake another
vehicle. There are two possible corridors for the EV in this
case. The first one is the right corridor (ζ0), which is also
the initial corridor of the EV. The second one is the left
corridor (ζ1), which is an opposite-way lane. Fig. 11 shows
the probability assigned to each corridor during the trip,
using a colour code to represent their status, as follows: blue
indicates when ζi = ζt; green means ζi is available, but
ζi ̸= ζt; and grey is referred to the situation where the gaps
of the corridor are not valid at the moment.

At the beginning of the experiment, the right lane is
selected as the target corridor since P (ζ0 = ζt) = 0.66.
At this moment, the gap with respect to OV2 is valid, but
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Fig. 11. Probability of P (ζi = ζt) for the right and left corridors during
the overtaking scenario.
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Fig. 12. Time evolution of the intersection traffic scene. (a) traffic status
at t = 8s. (b) traffic status at t = 19.5s (c) traffic status at t = 23.7s (d)
traffic status at t = 30s.

the value of P (ζ1 = ζt) is low. At t = 8s (see Fig. 12a), the
gap of ζ1 is not considered valid anymore and this corridor
becomes unreachable until t = 19.8s (Fig. 12b), when the
target corridor changes also, as P (ζ1 = ζt) > P (ζ0 = ζt),
triggering a lane-change maneuver. During the overtaking
maneuver, the gap of ζ0 is not valid due to the proximity
between the EV and OV1 (the status of the vehicles at this
moment is depicted on Fig. 12c). When the EV overpasses
OV1 at t = 25.5s, the probability of the target corridor
changes notably, and P (ζ1 = ζt) < P (ζ0 = ζt), but the
gap acceptance model does not allow to select this corridor
until t = 30s (Fig 12d), where the ∆X lag = 31.5m. At this
moment, the EV starts the lane changing maneuver to the
original lane, in order to complete the overtaking maneuver.

The gaps between the EV and the vehicles OV1, OV2
during the experiment are plotted in Fig. 13. Every positive
gap means that the OVi is ahead the EV. For this experiment,
OV1 started 45m ahead the EV, and OV2 started at 120m.
Four time instants are highlighted on the figure using vertical
dotted lines, which match the four frames plotted on Fig. 12.
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IV. CONCLUDING REMARKS

A maneuver planner for automated vehicles was designed
and implemented within a hierarchical architecture to take
tactical decisions about lane selection and regulatory signals
handling. The lane-selection algorithm uses a utility model
which considers both the current traffic status and the global
route, while it ensures safety by applying a gap-acceptance
model. The regulatory signal handling is performed using an
FSM that can manage right of way, must stop and pedestrian
crossing signals. The maneuver planner establishes a set
of restrictions which are taken into account by a motion
planner to generate a reachable trajectory set, and finally,
a valid trajectory for the EV. The trajectory set is involved
in the decision making process, providing flexibility and
robustness to the system in complex driving scenarios. The
complete ADS was implemented on a real vehicle and it was
successfully validated on two real scenarios: an intersection
with two other vehicles and a pedestrian; and a two way road
where the EV had to perform an overtaking maneuver.

Future work will be oriented towards the incorporation of
other regulatory signals as traffic lights or reserved lanes.
Also, the maneuver planner may include the integrity of
the sensory data to propose different type of maneuvers
accordingly i.e. if the quality of the lidar information is not
reliable enough, lane changes are avoided.
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