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Object-level Semantic and Velocity Feedback for
Dynamic Occupancy Grids

Vı́ctor Jiménez, Jorge Godoy, Antonio Artuñedo and Jorge Villagra

Abstract—LiDAR-based frameworks combining dynamic oc-
cupancy grids and object-level tracking are a popular approach
for perception of the environment in autonomous driving ap-
plications. This paper presents a novel backchannel from the
object-level module to the grid-level module that procures the
enhancement of overall performance. This feedback leads to an
enhanced grid representation by the inclusion of two new steps
that allow semantic classification of the occupied space and the
improvement of the dynamic estimation. To this end, objects
extracted from the grid are analyzed with respect to potential
object classes and displacement. Class likelihoods are filtered over
time at cell-level using particles and a naive Bayesian classifier.
The displacement information is computed taking into account
semantic information and comparing objects in consecutive
frames. Then, it is used to obtain velocity measurements that
are used to enhance grid’s dynamic estimation. In contrast to
other approaches in the literature seeking similar objectives,
this proposal does not rely on additional sensing technologies or
neural networks. The evaluation is conducted with real sensor
data in challenging urban scenarios.

Index Terms—Dynamic Occupancy Grid, Object Tracking,
Dynamic estimation, Classification.

I. INTRODUCTION

IN order to achieve safe driving, autonomous vehicles
require a complete and accurate representation of the

surrounding environment [1]. This objective involves multiple
tasks, such as the estimation of occupied and free space or the
accurate modeling of other traffic participants. Recent popular
approaches seek to obtain a solution to this challenge by
combining Dynamic Occupancy Grids (DOG) and object-level
tracking [2]–[5]. In this way, a two-fold representation of
the ego-vehicle’s surrounding environment is obtained: (i) a
cell-level description of the complete surroundings and (ii)
an accurate object-level characterization of road users. Fig. 1
shows an example of this double environment representation
obtained by employing the proposed perception framework.

Commonly, the DOG is calculated first, obtaining a
low-level characterization of the environment in terms of
occupied, free and unknown space regardless of the objects
type and shape. Then, using this cell-level representation as
input, an object-level tracking is used to obtain an accurate
estimation of the road users through the application of model
assumptions. Approaches following this strategy yield good
results in general. However, in order to obtain reliable estima-
tions at different steps, most of the works in the literature
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Fig. 1. Example of the surrounding environment representation. Cell-level
representation: the surrounding space is described in terms of occupancy,
including objects’ classification (left legend) and dynamics (right legend).
Object-level representation: road users are identified and described based
on shape and behaviour models.

employ neural networks or combine LiDAR sensors with
radar or cameras. In contrast, this work seeks to obtain these
reliable estimations by back-channelling information from the
object-based steps to the grid-based estimation.

Fig. 2 shows a scheme of the different steps constituting the
proposed strategy. As can be seen, it is divided into two main
modules: (i) grid-based representation and (ii) object-based
representation. Classical grid-based and object-based steps are
denoted in green, while new proposed steps are in yellow. The
three new developed steps are in charge of back-channeling
information referring to objects’ potential class and dynamic
state: (i) the cluster classification step is intended to compute
the similarity between clustered cells and certain classes of
obstacles; (ii) the Classified Occupancy Grid (COG) performs
the recursive estimation of this obstacle classification at cell-
level; and (iii) the velocity feedback calculation seeks to
provide velocity measurements to the DOG by analyzing
objects’ classification and displacement in consecutive frames.

The main contributions of this work are:

• A LiDAR-based perception framework focused on further
interconnecting a DOG and object-level tracking.

• A new approach to classify objects in the scene at a
cell-level, named Classified Occupancy Grid.

• The extension of the velocity feedback approach pre-
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Fig. 2. Perception framework overview. Inputs and outputs are denoted in blue, common perception steps in green and new steps proposed in this perception
strategy in yellow.

sented in our previous work [6] through the inclusion
of more object targets and object-level tracking features.

This article is organized as follows. Section II discusses
works related to (i) perception frameworks relying on DOG
and object-level tracking, and (ii) strategies for object clas-
sification and cells’ dynamic state estimation enhancement.
Sections IV and V describe the estimations carried out at cell
and object level, respectively. Section VI presents the evalu-
ation performed in real urban scenarios. Lastly, conclusions
and future works are provided in Section VII.

II. STATE OF THE ART

The perception of the environment can be addressed in
multiple ways. An overview of different techniques can be
found in [7]–[10].

To solve the problem of navigation in autonomous driv-
ing, one of the most common approaches is the estimation
of objects in the scene, particularly, addressing road users.
Typically, a strategy consisting of three steps is employed:
detection, data association and tracking [11]–[14]. In order to
accomplish the tracking step, Kalman Filter based approaches
are usually employed since they have low computational
complexity. However, some authors [15], [16] prefer to track
objects using particle filters as they allow to model non-
Gaussian state distributions and non-linear systems. Con-
versely to this three step based strategy, other works follow the
track-before-detection paradigm [17], by which the detection
step is avoided and, hence, information loss can be reduced,
e.g. [18].

Alternatively to these strategies focused on object estima-
tion, occupancy grid (OG) based approaches are also popular
since they do not address specific obstacles, but model the
complete surrounding environment in terms of occupancy:
occupied, free and unknown space. New approaches are able to
include the dynamic state of the cells [19]–[22] and semantic
information [23] in the estimation.

As already introduced in Section I, the combination of
grid-level and object-level representation modules provides a

more complete description of the environment. Hence, this
work exploits the advantages of this combination. In order
to correctly model the dynamic obstacles of common driving
scenes, a DOG approach is selected. For the object-level repre-
sentation, a strategy based on detection-association-tracking is
selected since the proposed feedback requires object detection
steps – as explained in Sections IV-D and V-E.

In the following subsections works employing this hybrid-
framework approach are reviewed making special emphasis
on describing the relationships between the grid-based and
object-based estimations and on the reasons that motivated
the development of the COG and velocity feedback steps.

A. Occupancy grid and object tracking based frameworks

Approaches combining OG and object-level tracking frame-
works can be divided into two families: (i) those that compute
both frameworks as independent perception modules and then
fuse their estimations into a more comprehensive outcome, and
(ii) those that propose interconnections between both modules
and provide a combined final output.

The strategies that compute the OG and the object-level
tracking as independent modules [3], [4], [24], [25] have
as main objective either the achievement of a perception
framework with redundant estimation or the development of
a modular perception framework that facilitates the exchange-
ability of algorithms and sensors. Alternatively, the family of
methods that interconnects both modules, attempts to enhance
the estimation of one or both modules by exploiting the outputs
of the other. This is the paradigm under which this article is
presented.

Bouzouraa and Schueler [11], [26] explored the combination
of an OG and an object-level tracking in order to obtain
advantages at both stages. On the one hand, the OG is used
to identify sensor measurements corresponding to dynamic
obstacles, so that object-level tracking receives an already
filtered input. On the other hand, the object-level estimation
is employed to predict the position of the cells associated
with dynamic obstacles and, therefore, prevent the occupancy
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trail that dynamic objects produce in classic OG approaches.
These works showed that both modules can benefit from
each other. However, the growing computational resources
motivated the development of new OG strategies – such as
popular DOGs based on particle filters [21], [22], [27] –
that can perform standalone in dynamic environments while
estimating continuous velocity values.

Given this grid-based estimation enhancement, different
authors employed a DOG as a low-level estimation of the
surrounding environment and focused on enhancing the iden-
tification of relevant obstacles in the grid in order to obtain
a more standardized high-level representation. This is a chal-
lenging task that can be addressed in multiple ways.

Recent approaches based on neural networks [5], [28] yield
good results in cells dynamic-static segmentation and object
extraction due to their ability to take context into account. As
it is well-known, the performance of these strategies depends
on the existence of extensive training datasets.

A more classic approach can be found in [29], where
a density-based clustering algorithm is employed to extract
objects from the grid, and then an object-level tracking is
computed using these objects as observations in a multi-
object Kalman filter. This work does not rely on further
information than cells’ features and is able to obtain a valid
object extraction and tracking. However, single-stage object
extraction algorithms can lead to wrong object estimations and,
therefore, wrong track initialization and matching.

Steyer et al. proposed a number of works [2], [30], [31] in
which the cell-level and object-level steps are closely related
in order to improve the object extraction and matching steps.
[30] associated the cells with existing object-level tracks taking
into account the predicted pose, shape, and velocity. In [31]
tracks’ labels are directly attached to DOG’s inner particles.
Furthermore, the existence of dynamic tracks is employed
to avoid convergence of cells corresponding to low dynamic
obstacles into static cells. Similarly, [32] also proposed to
include object IDs in the particles’ state in order to track
objects’ individual identity. However, no additional tracking
of the objects’ state is performed, only a clustering step is
required. These works obtained notable results, showing that
cell-level and object-level steps can be tightly coupled and
computed.

As can be seen, the combination of both perception frame-
works is a common and advantageous approach. The use of
a DOG as low-level environment representation from which
an object-level tracking can be computed is already a well-
established strategy. On the contrary, although their advantages
have been shown, back-channeling object-level information to
the grid is yet underexploited. This work proposes the follow-
ing strategy: first, a DOG is computed, then an object-level
tracking is calculated taking the DOG as input; subsequently,
an object-based feedback from the object-level module to the
DOG is performed. This feedback is used to enhance the
grid-based representation by including semantic information
and improving the grid’s dynamic estimation.

B. Object classification

Object classification is an essential task for the correct
estimation of road users and other obstacles in the scene. At
object-level, object classification usually relies on neural net-
works [5], [33], includes camera data [34] or takes advantage
of object-level tracking historical data [2].

At cell-level, Semantic Occupancy Grids (SOG) are gaining
popularity since, in addition to the occupancy representation
of the surrounding environment, they also include semantic
information of the space covered by each cell. Moreover, they
provide valuable information that can be used to enhance
different steps of the object-level framework, such as the
decisive and challenging object-level track initialization and
matching steps. Different works with remarkable semantic
results can be found in the literature [23], [35]–[37] relying
on camera information and neural networks.

In this work, the object-level classification strategy pre-
sented in [2] is modified to perform the classification at
cell-level. [2] employs an object-level tracking jointly with a
naive Bayes classifier based only on the geometry and velocity
of objects. Taking advantage of the proposed feedback-based
perception framework, this strategy is adapted to perform the
classification jointly with the DOG, thus obtaining a grid
representation named Classified Occupancy Grid.

Compared to other SOG approaches, the classification is
limited to the occupied space, but no image input or training
data are required. Regarding object-level classification ap-
proaches, the proposed strategy does not depend on the correct
performance of an object-level tracking, while it can provide
valuable information for its calculation.

C. DOG’s dynamic estimation enhancement

The DOG presented in [21] is a popular grid representation
used in several articles [3]–[5], [28], [29]. The present work
follows this paradigm to compute a DOG with LiDAR mea-
surements as input. As already denoted in Section I, a reliable
estimation of the dynamic state can be obtained from LiDAR
data alone, but enhanced results require velocity measurements
or neural networks. In [38], radar velocity measurements were
included in order to reduce ghost measurements. Similarly,
[29] took advantage of vehicle-to-everything communications
to obtain these measurements. [39] used only LiDAR data, but
substituted the particles by a recurrent neural network.

In our previous work [6], promising results were obtained
by computing velocity measurements from clustered objects
classified as vehicles; however, fundamental steps such as
matching, measurement filtering, or object classification still
had room for improvement. In the present work, the velocity
feedback of [6] is extended to other vehicle types and other
objects, e.g. guardrails. Moreover, since it is integrated into
a complete object-level framework, robust object extraction,
matching, and object classification are obtained, guaranteeing
reliable estimated velocity measurements.

To summarize, different works combining DOG and
object-level tracking computed from LiDAR data can be
found in the literature. However, most of them rely on neural
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Fig. 3. Perception framework workflow overview. Inputs and outputs are denoted in blue, classical perception steps in blue and new proposed steps in yellow.

networks or additional sensors in order to obtain different ad-
vantages. This work proposes employing additional feedback
from the object-level to the cell-level module seeking to obtain
a more comprehensive estimation of the environment without
depending on those additional resources.

III. PERCEPTION FRAMEWORK OVERVIEW

In order to facilitate the understanding of the proposed strat-
egy, this section provides an overview of its main workflow.
Fig. 3 shows the hierarchy of the proposed framework. In the
following, each of the four main stages denoted in Fig. 3 is
introduced

1) Input data and DOG occupancy update: LiDAR
input data is used to compute an observed OG of the
surrounding environment at the current frame. Similarly,
a road map grid representing the cells belonging to the
road is calculated using digital maps data. The DOG is
constituted by several steps, but, at this stage, only three
are performed: prediction, occupancy update and cells’
dynamic state calculation.

2) Cells classification: Cells are clustered based on the
information of the DOG. Then, the obtained clusters
are classified according to different object-level features
and used to update the recursive classification of the
COG. The obtained COG constitutes one of the outputs
regarding grid environment representation.

3) Object-level estimation: Taking into account the infor-
mation of the COG, the clustering step is repeated and
the obtained clusters are represented at object-level. The
extracted objects are used to identify and track the road
users in the scene. This road users tracking serves as
object-level representation output.

4) Velocity feedback and DOG spatial update: Lastly,
velocity measurements are inferred by analyzing the
displacement and class of the extracted objects. These
measurements are integrated in the DOG through the
spatial update. The dynamic state of the cells is re-
calculated and the remaining steps of the DOG are
performed. The resultant DOG constitutes the second
output regarding grid environment representation.

IV. GRID-BASED ENVIRONMENT MODELING

This section describes the proposed grid-based approach for
estimating the surrounding environment in terms of occupancy
and dynamic states, and semantic information. As shown in
Fig. 2, it is divided into four main steps: (i) the Observed
Occupancy Grid, which represents and fuses LiDAR data at a
cell-level, (ii) the Dynamic Occupancy Grid, where the recur-
sive estimation of occupancy and dynamic states is performed,
(iii) the Road Map Grid, which denotes the cells corresponding
to the road, and (iv) the new proposed Classified Occupancy
Grid, which labels occupied cells in different object classes.

A. Observed 2.5D occupancy grid

The data gathered by the LiDAR sensors is used to compute
a 2.5D OG measurement containing data relative to occupancy
and obstacles’ height. This OG will serve as (i) occupancy
observation for DOG’s update – described in Section IV-B
– and (ii) as height observation for object-level estimation –
presented in Sections IV-D and V-D.

LiDAR point cloud data is first divided into ground points
and obstacle points following the channel-based median filter
approach explained in [40]. This process provides a height map
approximating the ground’s height, with respect to which the
points of the point cloud are classified into ground or obstacle.
Taking into account this estimation, each cell stores two height
values: (i) the height of the highest point gathered within it
and (ii) the corresponding ground height value.

Then, the classified point cloud is transformed into an
observed OG using an approach based on [41]. OG based ap-
proaches directly include all sensors’ measurements into their
estimation. Therefore, each LiDAR beam is modeled by (i) an
occupancy distribution along the distance traveled by the beam
and (ii) a confidence measurement for this modeled occupancy
distribution. Then, the estimations of multiple beams in the
same cell are fused as a weighted average.

B. Dynamic occupancy grid

The recursive estimation of the occupancy state, together
with the estimation of cells’ dynamics, is achieved following
the DOG paradigm proposed in [21], but including velocity
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Fig. 4. Illustrative example of the prediction–update process of the DOG. In each iteration, the DOG is predicted from the previous time instant a) to
the current instant using particles’ dynamic states and decreasing the confidence on the estimated free space b). Then, given the occupancy and velocity
measurements c), the occupancy and dynamic states of the DOG are updated d).

measurements computed from estimated objects, as proposed
in our previous work [6]. A brief introduction to the main
workflow is presented below in order to understand the
concepts on which the COG is based and the inclusion of
the estimated measurements with the velocity feedback. A
practical example illustrating the main steps is given in Fig. 4.

1) State representation: The state of grid cells is divided
into two parts: occupancy and dynamic states. The occupancy
state (oc) is represented in terms of the Dempster-Shafer
Theory of Evidence (DST) [42], [43], being the frame of
discernment the events of occupied and free (Ω = {O,F}).
Thus, the occupancy state of each cell contains a mass for
occupied m(O) and a mass for free m(F ). The dynamic state
(vvv) is modeled by a set of particles contained within the cell
and defined as sssp = [xp

x, x
p
y, v

p
x, v

p
y , w

p], being xxxp =
[
xp
x, x

p
y

]T
the 2D-location, vvvp =

[
vpx, v

p
y

]T
the 2D-velocity and w the

weight. Particles can move along cells, but their weights are
directly related to the occupied mass (m(O)) of the cell within
which they are gathered:

m(Oc) =

νc∑
i=1

wpi,c

(1)

where νc denotes the number of particles within the cell c.
2) Prediction: The prediction of the DOG is performed

separately for the masses corresponding to occupied and
free. Occupied mass prediction is carried out by predicting
particles’ future state using a constant velocity model and then
applying (1). Free mass prediction is modeled as a decrease
in its value depending on the elapsed time. Since the sum
of masses cannot exceed 1, both the free mass and particles’
weights are limited accordingly. An illustrative example of this
prediction is depicted in Fig. 4a) and 4b).

3) Update: The update is performed according to oc-
cupancy and spatial measurements. The occupancy update
is computed from the predicted OG and the observed OG
applying the Dempster-Shafer rule of combination, see [44].
The spatial update is calculated by evaluating the dynamic
state of the particles with respect to the spatial measurements

estimated by the velocity feedback (formalized with (2), which
is introduced in the following paragraphs). An example of the
result of both updates, occupancy and spatial, is shown in
Fig. 4c) and 4d).

As mentioned in Section III, in this work the DOG update
step is performed separately. First, the occupancy based update
is carried out—stage (1) in Fig. 3. Subsequently, once the
velocity measurements are calculated, the spatial update is
accomplished—stage (4) in Fig. 3.

The velocity feedback estimations proposed in this article
are included in the grid following an approach based on [6],
[21], [44]. These velocity feedback estimations consist of a
Velocity Feedback State (VFS) including a velocity estimation
ϑϑϑ(k+1) and a value that models its reliability αϑ. The velocity
estimation is modeled as Gaussian:

ϑϑϑ(k+1) ∼ N (µµµ,ΣΣΣ)

being:

µµµ =

[
µvx

µvy

]

ΣΣΣ =

[
σ2
vx σvxy

σvxy σ2
vy

]
Each cell can be associated with only one VFS. Therefore,

the spatial update for the particles gathered inside a cell with
a VFS is calculated as follows:

wpi,c

(k+1) = αc
ϑ(k+1)

· w̃pi,c

(k+1) · µα +
(
1− αc

ϑ(k+1)

)
· wpi,c

(k+1|k) · µᾱ

(2)
being pi,c the i-th particle inside the cell c, wpi,c

(k+1|k) the

particle’s predicted weight, wpi,c

(k+1) and w̃pi,c

(k+1) the updated
normalized and unnormalized weights, and µα and µᾱ nor-
malization factors (see [44]).

Equation (2) models the fact that the velocity estimation
ϑϑϑ(k+1) has a reliability αc

ϑ(k+1)
. For example, if the mea-

surement is not reliable (αc
ϑ(k+1)

= 0), the spatial update is
dismissed and the updated normalized particle weight corre-
sponds to the normalization of the predicted weight.
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The updated unnormalized weights are computed by:

w̃pi,c

(k+1) = gc(k+1)

(
ϑc
(k+1)|x

pi,c

(k+1|k)

)
· wpi,c

(k+1|k)

being gc(k+1)(ϑ
c
(k+1)|x

pi,c

(k+1|k)) the likelihood of the particle
with respect the velocity estimation, calculated with:

gc(k+1)

(
ϑc
(k+1)|x

pi,c

(k+1|k)

)
=

1

2πσc
vxσ

c
vy

√
1− ρ2

exp

(
− 1

2 (1− ρ2)

[
C2
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vy − 2ρ Cvx Cvy

])
where:

ρ =
(σc

vxy
)2

σc
vxσ

c
vy

Cvx =
vp

i,c

x − µc
vx

σc
vx

Cvy =
vp

i,c

y − µc
vy

σc
vy

4) Cells’ dynamic state calculation: Cells’ dynamic state is
computed as the weighted mean and variance of the velocity
components of the particles within it. Since new particles may
introduce noise, only particles that have been resampled at
least nresample times are used. Cells can be classified as static
or dynamic by computing the Mahalanobis distance towards
zero as explained in [4], [44].

5) New particles and resampling: Lastly, new particles are
created in grid cells with occupied mass and a resampling step
is performed based on particles’ weight. The dynamic state of
new particles is randomly initialized with respect to a Gaussian
distribution with zero mean. If a VFS is associated with the
cell, a portion of these particles, defined by αϑ, are initialized
with respect to ϑϑϑ(k+1).

C. Road map grid

Digital maps are often required for different autonomous
driving functions, such as perception of the environment [4],
motion planning [45], or interaction-aware motion prediction
[46]. In this work a digital map containing information about
the drivable area is employed. This map is used to denote
whether a cell corresponds to the road or not, information that
is subsequently used as a feature for object classification (see
Section IV-D).

In off-line processing, the digital map is rasterized as a
binary grid map MG with a known reference system in global
coordinates. Each cell cG ∈ MG denotes whether the cell
corresponds to the road or not. Then, during online processing,
a local grid map ML with the same size and position as the
DOG is computed for each frame. The correspondence of each
cell cL ∈ ML with a cell cG ∈ MG is computed taking into
account the global positions of the ego-vehicle and MG.

D. Classified occupancy grid

DOGs provide a general estimation of the surrounding envi-
ronment in terms of occupancy and dynamic states regardless
of the detected object’s type. However, the distinction of
relevant obstacles can provide several advantages, e.g. model
assumptions, scene understanding, or specific object-level
tracking (Section V). This work proposes a novel grid-based
approach to address this information deficit.

With this goal, occupied cells are labeled with respect to
relevant objects: (i) dynamic road users and (ii) large off-
road obstacles. This is motivated by the requirements of the
posterior steps: object-level tracking and velocity feedback.
The object-level tracking is focused on dynamic vehicles and
pedestrians, as already explained in Section I. The velocity
feedback focuses on vehicles, but also addresses large off-
road obstacles – this is because DOGs commonly model these
obstacles as wrong dynamic obstacles [30], [39].

Therefore, occupied cells are labeled as:

L = {dyn. vehicle, dyn. pedestrian, wall, other}

The computation of COG takes advantage of both represen-
tations: cell-level and object-level. The estimation over time is
performed at a cell-level by including the class probabilities
in the state definition of DOG’s particles and updating them
with respect to an estimated class likelihood grid map. The
class likelihoods for each detected object are computed at
object-level by evaluating its estimated features with respect
to the four classes. Fig. 5 provides an illustrative example of
this procedure and the desired cell-level classification.

Fig. 5. Illustrative example of the object classification and COG.

1) Likelihood grid map: The likelihood grid map consists
of a grid representation of the likelihood of each detected
object with respect to the classes defined in L.

Objects are detected in the DOG by clustering neighboring
occupied cells – the clustering step is described in Section
V-A. As introduced in Section II, common object detection
procedures rely on 2D-size and velocity features. However,
this approach is not robust enough for additional class labeling
in LiDAR-based DOGs since (i) the estimated shapes are
limited to the sides perceived by the LiDAR and (ii) wrong
dynamic estimations can be found. For these reasons, the
number of features evaluated is extended by including (i)
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height and (ii) location with respect to the road. As a result, a
more reliable classification can be obtained. For example, as
depicted in Fig. 5, the location with respect to the road helps
to differentiate between dynamic vehicles and dynamic false
positives caused by guardrails or vegetation, while the height
feature allows to distinguish between low-speed pedestrians
and streetlights.

Therefore, four features are estimated for each clustered
object: the mean velocity v, the size s, the height h and the lo-
cation with respect to the road r. Velocity, height and location
relative to the road are directly computed from clustered cells
as the weighted mean velocity, the maximum cell’s height and
the percentage of cells within the road, respectively. On the
contrary, since the whole shape of objects is not detected, the
size feature requires a more elaborated calculation. Objects’
shape is modeled as an oriented bounding box, which is
computed differently depending on the class. The longest side
of this box is selected as the best representation of objects’
size. For the classes dyn. vehicle and dyn. pedestrian, the
bounding box is oriented as the velocity vector, see Section
V-B1. For class wall, the oriented bounding box is selected as
the one that maximizes the length size, see Section V-B4.

The likelihood functions used for each feature and class:
dyn. vehicle, dyn. pedestrian and wall, are defined using
combinations of sigmoidal functions, an example is shown
in Fig. 6. For class other, as unknown objects belonging to
multiple classes are addressed, no likelihood functions can be
defined. Therefore, it is modeled as a constant value Pother.

Lastly, each object’s likelihood with respect to each class is
directly rasterized into the cells constituting its cluster.

2) Classification over time: The combination of the four
features achieves a more reliable classification, yet it is a single
frame classifier and therefore it is prone to intermittent noise.
In order to address this issue, a naive Bayes classifier is used.
Thus, assuming independence between the four object-level
features, the estimation problem is modeled as follows:

p(ℓ|s, v, h, r) ∝ p(ℓ) · p(s|ℓ) · p(v|ℓ) · p(h|ℓ) · p(r|ℓ)

where p(ℓ|s, v, h, r) and p(ℓ) are the updated and prior prob-
abilities for the class ℓ ∈ L and p(·|ℓ) are the likelihoods with
respect to each feature.

This filtering process is performed at cell-level by the
particles of the DOG, whose state is extended to include the
probability of each class. In this way, object-level tracking
dependencies are avoided.

Particles’ displacement performs the prediction of the la-
bels’ position, and matching is directly solved by the cell in
which the particles are gathered in.

New particles are initialized with full probability for the
class other and zero for the other classes.

In each frame, class probabilities are updated as follows:

pi,c(ℓ|s, v, h, r) = pcmax · lc · αℓ + pcmax · (1− αℓ)

being:
pcmax = max

(
Pmin, pi,c(ℓ)

)
lc = pc(s|ℓ) · pc(v|ℓ) · pc(h|ℓ) · pc(r|ℓ)

Vehicle Pedestrian Wall

0 0.5 1 1.5 2 2.5 3

Height [m]

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

Road [%]

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

Distance [m]

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

Velocity [m/s]

0

0.2

0.4

0.6

0.8

1

Fig. 6. Likelihood functions with respect each class and each object-level
feature.

where i refers to the i-th particle in cell c and Pmin is the
minimum probability allowed to avoid singularities. αℓ is a
value that models the reliability of the classification performed
by the likelihood grid map and smooths the classification
update accordingly. Thereafter, the four class probabilities are
normalized.

Classification update in unclustered cells is a special case
since no class information is inferred for these cells. Unclus-
tered cells are those cells that do not have enough occupied
evidence or enough neighboring occupied cells (see V-A). This
usually occurs with new object detections, in the proximity of
sensed objects or due to noise. Therefore, class other is favored
in these cells, but without neglecting the rest of the classes.
With this intention, Pother is set to 1 and the likelihoods
for dyn. vehicle, dyn. pedestrian and wall are replaced by a
constant value Punclustered.

Finally, the COG’s cell-level representation is obtained
by translating particles class probabilities to the cells as a
weighted mean:

pc(ℓ) =

 νc′∑
i=1

wi,c

−1

·
νc′∑
i=1

pi,c(ℓ|s, v, h, r) · wi,c

where νc
′

denotes the set of particles within the cell c that



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 8

have been updated at least nupdate times.
Cell’s most likely class ℓ∗,c is selected as the class with

highest probability:

ℓ∗,c = argmax
ℓ∈L

pc(ℓ) (3)

V. OBJECT-BASED ENVIRONMENT MODELING

This module is divided into: (i) object clustering, (ii) cluster
classification, (iii) object-level representation, (iv) road users
object tracking, and (v) velocity feedback. The cluster classi-
fication step has already been introduced in Section IV-D1.

A. Object clustering

The proposed framework includes two main steps that
require object extraction from the DOG: (i) the COG and
(ii) the object-level representation for object-level tracking
and velocity feedback. However, the motivation of each step
differs. The COG seeks to label cells with respect to object
classes, without requiring a unified segmentation of the current
object, i.e. object splitting is not harmful as long as each
split part is correctly classified with the object’s class. On
the contrary, object-level representation requires that all cells
corresponding to the same object are grouped together in
a single cluster. Moreover, the COG information provides
cells with additional information which can enhance object
clustering. Therefore, two clustering steps are proposed in this
work, one for each of the mentioned steps.

1) Clustering for COG: A cell is considered to be occupied
by an object if its occupied mass is above the threshold
βocc and its free mass is under the threshold βfree. These
cells are clustered using a modified version of the Connected
Component Clustering algorithm [47], which also takes into
account velocity and free space information. Therefore, cells
are considered to belong to the same object if (i) they are
neighbors inside the kernel with size sk, (ii) its velocity
difference is lower than the threshold βvel and (iii) the free
space between both cells does not exceed the threshold βfree.
Taking into account that the COG seeks to identify pedestrians,
which can be close to each other, and, as explained before,
object splitting is not critical, the size of the neighborhood
kernel is set to sk = 1.

2) Clustering for object-level representation: The same
clustering strategy is employed, but taking into account the
cells’ most likely class (ℓ∗) — see (3).

First, since ℓ∗ is a discretization of the estimation, an image
dilation is performed so labels dyn. vehicle, dyn. pedestrian
and wall are extended to neighboring cells classified as other.
Then, this label is used in the following way:

• Cells can only be clustered with other cells with the same
label, except for cells labeled as dyn. vehicle or wall that
can be clustered with cells classified as other.

• The kernel size sk is set depending on the cell’s class, e.g.
dyn. pedestrian and wall cells explore their vicinity with
a kernel size sk = 1, while cells belonging to vehicles,
which are prone to splitting, explore their vicinity with a
kernel size sk > 1.

In addition, object-level tracking information is taken into
account to merge potentially split vehicles. For each cell, the
probability of belonging to a tracked vehicle is calculated
based on: (i) its location with respect to the position and
shape of the tracked vehicle and (ii) its velocity similarity.
Then, the probability for each cluster of belonging to a certain
tracked vehicle is calculated based on the percentage of cells
associated with the track:

γ(cl, τv) =
nτ
cells

ncells

being nτ
cells the number of cells associated with the track and

ncells the total number of cells of the cluster. A cluster is
considered to belong to a tracked vehicle if its percentage of
associated cells exceeds the threshold γmerge. If more than one
cluster is associated with a tracked vehicle, they are merged
into a single cluster.

B. Object-level representation

Objects for object-level representation are extracted from
the DOG by clustering cells, as presented in Section V-A2.
For each cluster, different object-level features are computed.
Thus, each object o ∈ O, being O the set of objects detected
in the scene, is described by:

ooo =
[
bbbv, bbbg, bbbvg, bbbl, vvv, h, ℓℓℓ

]
where vvv = [vx, vy] is the average velocity vector of the
clustered cells, h is the height, calculated as the difference
between the cells’ highest and lowest height values estimated
by the 2.5D Observed OG, and ℓℓℓ is a vector containing the
weighted average probabilities for each COG’s class. bbb refers
to an oriented minimum bounding box and superindices v,
g, vg and l denote if the bounding box is computed based
on (i) the velocity vector, (ii) the footprint geometry, (iii)
the combination of velocity and geometry, or (iv) seeking
to maximize length, respectively. Fig. 7 shows an illustrative
example of these boxes.

Each bounding box is defined as:

bbb = [xx, xy, θ, sl, sw]

being xx, xy the 2D-position of the box’s center, θ the box
orientation and sl, sw its length and width, respectively. All
these variables are assumed as Gaussian.

1) Bounding box based on velocity: The velocity-based
bounding box is directly oriented as the velocity vector, i.e.
θb

v

= arctan(vy/vx). Its position and size are calculated
as the minimum bounding box that gathers all the cells
corresponding to the object given θb

v

. Since the reliability
of the velocity orientation decreases with the speed value,
the standard deviation of the variables defining bbbv is adjusted
accordingly. The calculation of the standard deviation of the
orientation variable θb

v

given the velocity criteria is shown
in (4). The standard deviation for the rest of the variables is
computed equivalently.

σbv

θ =

{
σbv

θ,min if ||vvv|| ≥ vrel

σbv

θ,max − σbv

θ,max−σbv

θ,min

vrel
· ||vvv|| otherwise

(4)
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Fig. 7. Illustrative example of oriented minimum bounding boxes.

where vrel defines the speed threshold above which the
velocity orientation can be considered reliable and σbv

θ,min and
σbv

θ,max are minimum and maximum standard deviations for
variable θ experimentally adjusted.

2) Bounding box based on geometry: The geometry-based
bounding box is computed taking into account the esti-
mated occupied and free space. For each angle in the set
θ = {0, 1, ..., 90◦} an oriented minimum bounding box gath-
ering occupied cells and a fitting score are calculated.

The fitting score is computed as:

sfit = sfree · scontour
being sfree a score that measures the amount of free space
modeled inside the box:

sfree =
1

ncells

ncells∑
c=1

m(F c)

and scontour a score that measures how well the box fits to
the occupied space calculated as the weighted variance of the
distance between the cells and the sides of the box. Distances
are additionally weighted accordingly to the cell’s occupied
mass and whether they correspond to the contour of the object
or not:

wd,c =

{
m(Oc) if contour
m(Oc) · β¬contour otherwise

being wd,c the weight of the distance of the cell c. A cell is
considered to be contour if the number of cells belonging to
the same object between the cell and the sensors’ reference
system is less than ncontour.

The reliability of geometry-based bounding box estimation
is directly related to L-shaped footprints. Therefore, the stan-
dard deviations of the variables defining the geometry-based
box bbbg are adjusted accordingly. The calculation of the
standard deviation of the orientation variable θb

g

given the
geometry criteria is shown in (5). The standard deviation for
the rest of the variables is computed equivalently.

σbg

θ =

{
σbg

θ,min if sgl > sLl ∧ sgw > sLw
σbg

θ,max otherwise
(5)

where σbg

θ,min and σbg

θ,max are experimentally adjusted and sLl
and sLw are thresholds that denote when a L-shape is detected.

3) Bounding box based on velocity and geometry: The
bounding boxes calculated based on the velocity and the geom-
etry are more or less reliable depending on the circumstances.
Some procedures, such as the track state update step (Section
V-C1) can correctly handle multiple estimations for the same
variable taking into account their uncertainties. However, other
steps, such as object matching or velocity feedback (Sections
V-C2 and V-E) require a single bounding box representation.
For this reason, an oriented bounding box (bbbvg) based on both
criteria, velocity and geometry, is calculated. This bounding
box is computed as the minimum box that contains the
clustered cells given the orientation θb

vg

. This orientation is
obtained as the weighted mean that takes into account the
standard deviations of the orientations based on the velocity
σbv

θ and the geometry σbg

θ :

θb
vg

= βbvg

· θb
g

+ (1− βbvg

) · θb
v

where:

βbvg

=
σbv

θ

σbv
θ + σbg

θ

The motivation of this bounding box calculation is illus-
trated in Fig. 7. In the case of the green car, the velocity based
box is more accurate than the geometry based box since the
vehicle is moving straight and only the rear of the vehicle
is detected. On the contrary, in the case of the blue car, the
velocity based box is less accurate because the velocity vector
is delayed with respect to the vehicle’s real orientation and
an L-shape is detected leading to an accurate geometry based
box.

4) Bounding box based on maximal length size: The bound-
ing box based on the maximization of length size is calculated
to obtain a reference of the size of large off-road obstacles,
as required by the COG in Section IV-D1 (class wall). The
calculation is equivalent to the one used for bbbg in Section
V-B2, but replacing the fitting score by the largest side of the
box.

C. Road users object-level tracking

As introduced in Section I road users are additionally
tracked at an object-level. Their state is estimated over time
using an extended Kalman Filter (EKF). The dynamic state of
each object track τ ∈ T is defined as:

sssτ =
[
xτ
x, x

τ
y , θ

τ , vτ , sτl , s
τ
w, s

τ
h

]
being xx, xy the 2D position, θ the orientation, v the longi-
tudinal velocity, and sl, sw, sh the length, width, and height,
respectively.

The prediction model employed is the constant velocity
(CV) model. Observations for the update are obtained from
objects clustered from the grid. For vehicles, an additional
classification into car, cycle, or truck is performed. The main
stages of this process are described below.
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1) Track state update: Tracks’ update is performed differ-
ently for vehicles and pedestrians.

Pedestrians’ real size is well approximated by the obtained
clusters. Thus, the velocity-based bounding box (bbbv) is suf-
ficient for location and shape estimation. Then, pedestrians’
observations are defined as:

zzzp =
[
xbv

x , xbv

y , vx, vy, s
bv

l , sb
v

w , h
]

On the contrary, vehicles’ real shape is not captured by
the DOG. Therefore, for vehicles, the information about the
footprint geometry and the estimated vehicle class is also taken
into account. Moreover, in order to avoid errors due to sensed
footprint changes, the update is performed using a reference
point.

In this work, the reference point can be either the center of
a side or a corner. The reference point [rτx, r

τ
y ] of the track τ is

calculated by checking the theoretical visibility of its sides as
explained in [6]. The reference points [rb

v

x , rb
v

y ] and [rb
g

x , rb
g

y ]
of the objects’ bounding boxes bbbv and bbbg are calculated
following the free space based approach presented in [2]. Since
these three reference points can differ, the reference points
of the object’s bounding boxes are transformed to the track’s
reference point. As a result, the object’s reference points for
the update are computed as follows:

rrrb,τ = rrrb +RRRθb

[
δ(lτ(k|k))

δ(wτ
(k|k))

]

where RRRb
θ is the rotation matrix with respect to the object’s box

orientation and δ(lτ(k|k)), δ(w
τ
(k|k)) are selected with respect to

the tracks size and the reference points relation:

δ(lτ(k|k)) ∈ {−1,−0.5, 0, 0.5, 1} · lτ(k|k)

δ(wτ
(k|k)) ∈ {−1,−0.5, 0, 0.5, 1} · wτ

(k|k)

Fig. 8 provides two examples of the definition of variables
δ(lτ(k|k)), δ(w

τ
(k|k)).

Reference point

Reference point for update
Track box

Object box with track's size

Object box

Fig. 8. Illustrative examples of the calculation of the update reference point.

In view of the above, the state of the observation of a vehicle
is defined as:

zzzv = [rb
v,τ

x , rb
v,τ

y , θb
v

, sb
v

l , sb
v

w ,

rb
g,τ

x , rb
g,τ

y , θb
g

, sb
g

l , sb
g

w , vx, vy, h]

After the update, the track center is recomputed as:

xxxτ
(k+1|k+1) = rrrτ(k+1|k+1) −RRRθτ

(k+1|k+1)

[
δ(lτ,ζ(k+1|k+1))

δ(wτ,ζ
(k+1|k+1))

]
(6)

where (k + 1|k + 1) denotes updated variables and box size
variable δ(lτ,ζ(k+1|k+1)), δ(w

τ,ζ
(k+1|k+1)) are selected taking into

account the track’s updated size and vehicle class (ζ) size:

δ(lτ,ζ(k+1|k+1)) ∈ {−1,−0.5, 0, 0.5, 1} ·max
(
lτ(k+1|k+1), l

ζ
)

δ(wτ,ζ
(k+1|k+1)) ∈ {−1,−0.5, 0, 0.5, 1}·max

(
wτ

(k+1|k+1), w
ζ
)

2) Matching: The association problem is solved using the
Global Nearest Neighbor (GNN) [48] approach. This algo-
rithm computes the cost of assigning each object to each track
and, then, matches each object to a single track seeking to
minimize the total cost. The association cost is usually com-
puted by comparing the state of the objects and of the tracks.
Nevertheless, given that the perception strategy employed in
this work combines grid and object based algorithms, two
additional costs are included: a particle labeling association
cost, inspired by [31], and an object class association cost
that takes advantage of the classification of the COG.

First, the distance between predicted tracks and objects is
calculated. Only nearby tracks and objects can be matched,
i.e. located at a distance below the threshold dmax

matching . For
associations fulfilling this requirement, an association cost
cmatching is computed based on three features: (i) dynamic
state similarity, (ii) class similarity, and (iii) particle associa-
tion:

cmatching = cstate + cclass + cpart

where the subscripts refer to the cost of each one of the
aforementioned features.
As additional gating, only tracks and objects that meet the
next condition can be matched:

cmatching < cmax
matching

being:
cmax
matching = cmax

state + cmax
class + cmax

part

Dynamic state similarity (cstate) is calculated by comparing
the tracks and objects position and velocity:

cstate = min

(
1,

|∆xxx(ob
vg

, τ)|
∆max

pos

)
+min

(
1,

|∆vvv(o, τ)|
∆max

vel

)
where ob

vg

refers to the object’s bounding box calculated
considering velocity and geometry (see Section V-B3), ∆max

pos

and ∆max
vel are design parameters included to normalize the

similarity between 0 and 1; therefore, the maximum dissimi-
larity for the dynamic state is cmax

state = 2. Note that in the case
of vehicles, xxx is replaced by the reference point rrr.

The similarity regarding COG’s classification (cclass) is
computed taking into account whether the track corresponds
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to a vehicle or a pedestrian. The calculation for vehicles
is as follows, the calculation for pedestrians is equivalently
determined:

cclass =

 0 ℓ∗,o = vehicle
cmax
class ℓ∗,o = other
∞ otherwise

Notice that the matching between objects of different classes
is not allowed.

The similarity by particle association (cpart) is calculated
taking into account the number of particles labeled with the
track’s ID. Once a track is updated, particles belonging to its
associated object are labeled with track’s ID. In the next frame,
if the majority of particles of the potential matching object
are labeled as the track’s ID, cpart is set to zero; otherwise,
cpart = cmax

part .
3) Tracks initialization and deletion: As explained in Sec-

tion IV-D, many obstacles are modeled in the DOG, but not
all of them may be dynamic road users. Therefore, new tracks
are only initialized from objects that are likely to be a vehicle
or a pedestrian i.e. the probability for the class dyn. vehicle
or dyn. pedestrian exceeds the respective thresholds βℓ,vehicle

and βℓ,pedestrian.
Additionally, vehicles can only be initialized if their velocity

is high enough to provide a reliable orientation, i.e. above the
velocity threshold vborn and if there are no other vehicles in
its immediate vicinity. The immediate vicinity surrounding a
track is considered as the area covered by the track’s box
enlarged by a distance dborn.

Existing tracks are deleted if they are not detected during
nτ,d consecutive frames.

D. Vehicle classification

Vehicle tracks are classified into: ζ = {car, cycle, truck}.
When a vehicle track is initialized, the associated object
is evaluated with respect to the three possible classes and
assigned to the most likely class (7). Each time the track is
updated, the associated object is evaluated with respect to the
larger size classes, i.e. cycles can change to car or truck, cars
can change to truck. A new class is assigned if it is positively
evaluated at least nζ times.

ζ =

 truck, h ≥ htruck ∧
(
lb

vg ≥ ltruck ∨ wbvg ≥ wtruck

)
cycle, h < htruck ∧

(
lb

vg ≤ lcar ∧ wbvg ≤ wcar

)
car, otherwise

(7)

E. Velocity feedback

As explained in Section II, DOGs are able to provide
reliable results using only LiDAR data, but better dynamic
estimations can be obtained if velocity measurements are
added. If only laser measurements are used, the dynamic
estimation is possible since particles with a dynamic state
similar to the objects’ real velocity are more likely to correctly
model the objects’ displacement and, therefore, to survive
along consecutive iterations. However, the lack of velocity
measurements and the assumed independence between cells

may lead to non-homogeneous or incorrect dynamic estima-
tions.

The objective of the proposed velocity feedback is to take
advantage of the object-level steps to compute VFSs which
are then used to update and initialize particles, as explained
in Section IV-B. This section explains how to compute the
velocity estimation ϑϑϑ(k+1) and its confidence value αϑ for
different objects in the scene.

In this work, two groups of objects are addressed: (i)
dynamic vehicles and (ii) large off-road obstacles. For the rest
of objects, no velocity VFS are computed, and therefore the
confidence value in their cells is set to zero (αc

ϑ = 0).
1) Velocity feedback for dynamic vehicles: VFSs for dy-

namic vehicles are computed taking into account observed
objects displacement at consecutive frames – Section V-B –
and the information of the object-level tracking – Section V-C.
The estimated velocity ϑϑϑ(k+1) cannot be directly obtained
from the tracks’ dynamic state since it comes from an already
filtered estimation. Instead, it is used to obtain the matching
between objects at consecutive frames and a reference of
correct dynamic behaviour so that atypical velocity estimations
can be filtered.

Therefore, the velocity estimation ϑϑϑ for object o, associated
to the track τ at time (k) is estimated as follows:

ϑϑϑo =
xxxo,bvg′ − xxxq,bvg′

∆t

where ∆t is the time difference, q is the object associated
with track τ at time (k−1), xxxo,bvg′

and xxxp,bvg′

are the centers
of the bounding box bvg recalculated with respect to track’s
size to avoid false dynamic estimations due to estimated size
changes. Therefore, similarly to (6), the center of such box is
obtained as follows:

xxxbvg′

= rrrb
vg

−RRRθbvg

[
δ(lτ,ζ)
δ(wτ,ζ)

]
Fig. 9 provides an illustrative example of the calculation of
this center point.

The confidence value αo
ϑ is calculated taking into account (i)

the reliability of the matching between the track and the object
(αmatching

ϑ ), (ii) a reference of correct dynamic behavior
(αbehaviour

ϑ ), computed comparing the estimated velocity and
track’s dynamic state, and (iii) a design parameter included
to avoid full initialization and updating of particles based on
VFSs (αmax

ϑ ):

αo
ϑ = αmatching

ϑ · αbehaviour
ϑ · αmax

ϑ

The reliability regarding the matching is measured consid-
ering the association cost between the track and the matched
object, and all the other potential matches (see Section V-C2):

αmatching
ϑ =

cmax
matching − cτ,omatching∑O

j (c
max
matching − cτ,jmatching)

αbehaviour
ϑ seeks to filter atypical velocity estimations by

considering track’s estimation as an approximated reference
of correct behavior:

αbehaviour
ϑ = min

(
1,max

(
0,∆behaviour

v ·∆behaviour
θ

))
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Vehicle's velocity vector

Track's velocity vector

Track box

Object box based on vel. and geo.

Object box with track's sizeReference point

Center point

Fig. 9. Illustrative example of velocity feedback calculation.

being ∆behaviour
v and ∆behaviour

θ similarity measures regard-
ing the velocity and orientation, respectively, defined as fol-
lows:

∆behaviour
v =

∣∣∣vτ − ||vvvo||
∣∣∣−∆vmax

behaviour

∆vacceptablebehaviour −∆vmax
behaviour

∆behaviour
θ =

∣∣∣θτ − arctan (voy/v
o
x)
∣∣∣−∆θmax

behaviour

∆θacceptablebehaviour −∆θmax
behaviour

Notice that ∆vacceptablebehaviour , ∆vmax
behaviour, ∆θacceptablebehaviour and

∆θmax
behaviour should be defined widely in order to avoid

convergence over track’s estimation, e.g. ∆θacceptablebehaviour = 45◦

and ∆θmax
behaviour = 120◦ (as depicted in Fig. 9).

2) Velocity feedback for large off-road obstacles: This
feedback addresses the known problem of large structures
wrongly detected as dynamic by the DOG [30], [39]. For
this purpose, the semantic information estimated by the COG
is used. In this way, cells labeled as wall are assumed to
correspond to a static obstacle; hence, the velocity estimation
ϑcϑcϑc in the cell c is set to zero:

ϑϑϑc = 0

and the reliability of this estimation is proportional to the
probability of the cell of corresponding to the label wall:

αc
ϑ = αmax

ϑ · pc(ℓ = wall)

VI. EXPERIMENTAL RESULTS

This section describes a series of experiments aimed at val-
idating the feasibility of the proposed perception framework.
First the experimental platform and implementation details
are introduced. Then, the results obtained in different urban
scenarios for (i) the COG; (ii) the velocity feedback; and (iii)
DOG and object-level tracking, are shown. Further results can
be seen in the attached video.

A. Experimental platform and implementation details

The proposed perception framework has been validated
using two automated vehicle prototypes of the AUTOPIA
research group [49]. Both vehicles count with a set of propri-
oceptive and exteroceptive sensors that allow localization and
data correlation through time synchronization. Additionally,
one of them has three on-board LiDAR sensors — one IBEO
Lux and two VLP-16 — with which the perception framework
is computed.

Fig. 10 shows an example of the combined point cloud
obtained with this set of sensors. The level of detail achieved
depends on sensors’ capabilities: for LiDARs with higher
resolutions a more detailed description of the surrounding
environment would be obtained, benefiting the steps based on
object-level features. Conversely, a LiDAR with less vertical
field of view or fewer layers may not be able to correctly
estimate the height of the obstacles.

Fig. 10. Example of the point cloud obtained with the on-board LiDAR
sensors. Additionally, the position and size chosen for the grid map and its
cells are shown. Vehicles are manually labeled.

The three sensors are tilted and located at the front and the
sides of the vehicle in order to obtain a better environment
detection of the area ahead of it. Given this positioning and
the sparsity of the data above a distance of 50 m, the grid map
is located focusing on the area ahead of the ego-vehicle and its
size is defined as 64× 64 m — as it is shown in Fig. 10. The
cell size is selected as 0.125 m based on a trade-off between
computational efficiency and an accurate discretization of the
objects. All the experiments described along this work were
conducted on sunny days.

Regarding real time implementation, grid-based approaches
tend to be computationally demanding [2], [21], [29]. A real
time realization of the proposed framework has been achieved
including all the steps but the COG – which is currently
under development – with an average time of 0.055 s and
a possible variation of approximately ±0.02 s, depending on
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the number of obstacles in the scene. This realization has been
developed using parallel programming of GPUs with Nvidia
CUDA for the grid-level module steps and CPU with C++11
for the object-level module steps. It has been executed on a HP
ZBook Studio G5 with an Intel(R) Core(TM) i7-8750H CPU
@ 2.20 GHz, 16 GB RAM DDR4 2667 MHz and a Nvidia
Quadro P1000 Mobile with 4 GB VRAM.

B. COG results
To illustrate how the COG works, a simple example con-

sisting of a start-moving maneuver is shown in Fig. 11.
Hereinafter, all figures displaying qualitative results have been
generated through MATLAB R2021b. At first, the detected
vehicle is stopped (k = 1). The size and location with respect
to the road features are met for the dynamic vehicle class,
but not the velocity feature. Therefore, it is classified as
other by the COG. Once the vehicle starts moving (k = 11)
the dynamic vehicle class likelihood increases and the COG
progressively labels the detected vehicle as dynamic vehicle
– gradual increase in the red color brightness from (k = 11)
to (k = 19). Recall that the smoothness of the label change
depends on the class likelihoods, but also on the confidence
variable αℓ, which should be defined in order to find a balance
between noise filtering and speed responsiveness.

a) b) c)

=
 1

=
 1

1
 1

5
=

 1
9

0 10m/s 1.5m/s 10

Fig. 11. COG’s functioning example. a) DOG with occupied cells coloured
with respect to their velocity: black static, coloured dynamic. b) Likelihood
grid map coloured with respect to the most likely class: red dynamic vehicle
and black other; color brightness denotes the likelihood value. c) COG
represented with the same colour pattern that the likelihood grid map.

To expose the capabilities of the COG, a scenario with
different objects and dynamic states is selected. The obtained
results are compared with the outcome of (i) a dynamic cluster
segmentation approach and (ii) the likelihood map, Fig. 12.

The dynamic cluster segmentation method is the classic
object extraction approach mentioned in Section II. Objects are

clustered using the approach proposed in V-A1. Subsequently,
clustered obstacles with a significant speed are selected. This
method yields acceptable results since most dynamic obstacles
are correctly identified. However, it entirely depends on the
good dynamic estimation of the DOG. Therefore, wrong dy-
namics lead to incorrect clusters, such as the obstacle modeled
at the position of a van or the left wall that are estimated as
dynamic – denoted with the red circles and identified as 1 and
2, respectively.

The likelihood grid map relies on more object features
than the dynamic cluster segmentation method, therefore some
noise is avoided (e.g. the incorrect dynamic wall). Moreover,
by addressing different classes and not a binary segmentation,
specific feature values can be defined for each class. For
example, the velocity threshold for class dyn. pedestrian is set
close to zero and, hence, pedestrians starting to cross are cor-
rectly detected – circles number 4 and 5. Nevertheless, despite
this class specific search, some objects are still incorrectly
classified – circles number 1 and 3.

These two approaches, dynamic cluster segmentation and
likelihood grid map, are single-frame detectors and therefore
susceptible to degradation with isolated noise. In contrast, the
COG achieves smoother label changes. This can be clearly
noticed in the pedestrians crossing the crosswalk – circle
number 5. In the second frame, the COG has not yet converged
over the labels dyn. pedestrian, but in the third frame all
pedestrians are correctly modeled. Despite this convergence
dependency, the filter allows to correctly avoid the incorrect
estimation of the likelihood map of pedestrians at the locations
of the van and traffic signals, which may lead to wrong
object-level tracks initialization.

C. Velocity feedback DOG results
The benefits of VFSs computed from detected objects

are evaluated in the following experiments. For the sake of
readability, the DOG fed with these VFSs will be denoted as
VF-DOG and the DOG computed only with LiDAR measure-
ments as baseline DOG.

A different urban scenario is selected seeking to illustrate
the advantages of the velocity feedback, Fig. 13. In this
scenario, two complex situations for the dynamic estimation
are shown: (i) the guardrail whose real shape is detected as
the ego-vehicle moves ahead – red circle number 1, and (ii)
the truck entering the FOV – circle number 2. In both cases,
the VF-DOG provides an improved dynamic estimation.

The guardrail is modeled as a dynamic obstacle by the
baseline DOG since its real size is larger than the FOV and
new occupied space is constantly modeled as the ego-vehicle
moves ahead. Particles moving with the same velocity as the
ego-vehicle are the best explanation for the presence of this
constantly detected obstacle. On the contrary, the VF-DOG
is able to correctly model the guardrail as static since the
COG identifies it as a large off-road obstacle, and therefore
the velocity feedback back-channels VFSs centered on zero.

The truck is a new object entering the FOV whose detected
size changes with time. Moreover, as the ego-vehicle moves
ahead, the guardrail occlusion is reduced, allowing the detec-
tion of the rear of the truck. In this case, different particles’
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behaviors can explain the modeled occupied space, as can be
seen in the non-homogeneous dynamic estimation of the cells
belonging to the rear of the truck. In contrast, in the VF-DOG
approach, the calculated VFSs approximately model the real
displacement and therefore a faster and more homogeneous
representation is achieved.

To evaluate how the velocity feedback affects the dynamic
estimation of the DOG, a quantitative evaluation is performed
with the two automated vehicle prototypes presented in Sec-
tion VI-A. The selected scenario consists of a vehicle follow-
ing maneuver. The two vehicles are manually driven along
the path shown in Fig. 14. The vehicle following the other
vehicle executes the perception framework, and the leading
vehicle records its own state as ground truth data.

Straight stretches

Turning stretches

Roundabout

Start

End

Fig. 14. Test scenario for dynamic state estimation. Evaluation is divided in
straight stretches, turning stretches and roundabout.

In order to measure the accuracy of the dynamic esti-
mation obtained by both approaches, LiDAR-based DOG
and VF-DOG, all particles within the ground truth vehicle
box are clustered and the errors obtained for the weighted
mean velocity module and orientation are calculated. Since
the velocity orientation for static objects is meaningless, the
orientation error is only computed for those iterations where
the sensed vehicle drives faster than 1m/s. These errors are
shown in Fig. 15.
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Fig. 15. Baseline DOG (BL) and VF-DOG (VF) quantitative evaluation
separated by stretches.

As can be appreciated in the graph, the VF-DOG provides
an enhancement over the baseline DOG in terms of dynamic

estimation. The baseline DOG generally yields good results,
but its performance decreases in dynamic changing situations.
This is clearly exposed by the errors obtained for each stretch
type. In straight stretches, both DOGs provide similar results.
While, for stretches where the vehicle is turning, the VF-DOG
provides a remarkable better estimation, particularly regarding
the orientation estimation. This performance difference is
illustrated in Fig. 16, where a snapshot of the roundabout
section is shown.

VF-DOG

-90
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180

Baseline

Ground truth velocity vector

Ground truth box

Mean velocity vector

Velocity based box

Fig. 16. Example of the dynamic estimation obtained from the baseline DOG
and the VF-DOG at the roundabout.

For the baseline DOG approach, the cells corresponding to
the side of the vehicle correctly model the vehicle orientation,
but those on the rear seem to model a straight trajectory.
This effect occurs because in the baseline DOG only the
occupancy update step is performed. The occupancy update
allows particles with any dynamic behaviour as long as they
are within a cell with occupied evidence. Moreover, in this
case, the vehicle self-occludes the space ahead it, hence
particles moving straight are not dismissed. This wrong es-
timation is translated to the object-level features as illustrated
by the velocity vector – calculated as the mean velocity of
the clustered cells – and velocity based box. Contrarily, the
outcome of the VF-DOG shows a more homogeneous cell
orientation estimation and less delay in the velocity vector,
thanks to the spatial update and particle initialization steps
based on the estimated VFSs.

Fig. 17 displays the VFSs computed during the roundabout
stretch and Fig. 18 compares the mean velocity vectors ob-
tained from the baseline DOG and VF-DOG with the ground
truth data.

It can be seen that the velocity estimations of the VFSs
provide a correct approximation of the sensed vehicle’s real
dynamic behavior, leading to a consistent enhancement over
the baseline DOG dynamic estimation.

D. VF-DOG and object-level tracking results

In this section, the final output of the perception framework
is showcased. As explained in Section I, it is composed of two
different data structures: (i) the cell-level representation of the
surrounding environment and (ii) the object-level estimation
of road users. Figure 19 shows the results obtained at both
representation levels for the scenarios analyzed previously.
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Fig. 17. VFSs estimated for the roundabout stretch denoted in Fig. 14.
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Fig. 18. Dynamic results of the baseline DOG, and VF-DOG for the
roundabout stretch denoted in Fig. 14.

It can be seen that the DOG provides a homogeneous
dynamic estimation for all tracked vehicles, while large
vegetation and buildings are modeled as static. Regarding
object-level tracking, although some wrong dynamic cells
can be found outside the road, all object-level tracks are
correctly initialized and classified. In addition, vehicles are
also classified into classes car, truck, and cycle; and, hence,
receive a shape representation corresponding to it. In order
to show the results of the object-level tracking in previous
iterations, the estimated trajectories based on the position of
the tracks in consecutive frames are also included. Their length
is related to the instant when the track is initialized. It can
be seen that both vehicles and pedestrians, are consistently
tracked along multiple iterations.
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Fig. 19. Examples of the perception framework output. The scene on the
left shows how the proposed approach can correctly identify vehicles and
pedestrians among all obstacles. The scene on the right shows that tracked
vehicles can be additionally classified into three different classes.

Finally, seeking to provide a reference of the tracking
accuracy at object-level, a quantitative evaluation has been
performed in the scenario presented in Fig. 14, but including
several tests with different trajectories. The duration of all tests
sums up to 10430 iterations, i.e. 14 minutes approximately.

Table I displays the results obtained in terms of the mean
absolute error (MAE) and root mean square error (RMSE).
The position error is calculated as the 2D distance between
the center of the ground truth vehicle and the position of the
track. The size error is calculated as (1 − IoU) being IoU
the intersection over union between a bounding box with the
vehicle’s real size and a bounding box with the size estimated
by the object-level tracking. As it can be noticed, accurate
results are obtained for the four estimations.

TABLE I
QUANTITATIVE EVALUATION OF THE OBJECT-LEVEL TRACKING.

Position [m] Orientation [deg.] Velocity [m/s] Size
MAE 0.313 1.946 0.221 0.129

RMSE 0.347 2.662 0.339 0.135

VII. CONCLUSIONS AND FUTURE WORKS

Frameworks combining DOG and object-level tracking are
a popular approach for perception of the environment in
autonomous driving applications. This paper presents a novel
object-level feedback from the object-level module to the
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grid-based module that allows to enhance the grid-based
environment estimation and, hence, the overall result. This
proposal allows to obtain a semantic occupancy grid and dy-
namic estimation improvement without requiring the inclusion
of additional sensors or neural networks. To that end, objects
extracted from the DOG are evaluated with respect to potential
object classes and possible displacement. The result of class
evaluation is rasterized into the grid and filtered over time
using DOG’s inner particles and a naive Bayesian classifier,
thus obtaining a grid including semantic information. The
displacement information is computed taking into account
this semantic information and comparing objects’ position
at consecutive frames. Then, it is used to model velocity
feedback-based measurements that are used to update and
initialize particles. The proposed system has been validated
with real data in various challenging urban scenarios including
a number of different static and moving obstacles.

Future work will address the enhancement of the object
extraction and classification steps in order to obtain more
semantic information for the COG. Also, the object-level
tracking will be addressed in order to improve decisive
steps such as initialization and matching. Regarding real time
realization, the parallel implementation of the COG is yet
under development and will be soon integrated in the DOG
framework.
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[49] J. Godoy, J. Pérez, E. Onieva, J. Villagra, V. Milanés, and R. Haber,
“A driverless vehicle demonstration on motorways and in urban envi-
ronments,” Transport, p. 253–263, 2015.

IX. BIOGRAPHY SECTION
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Antonio Artuñedo received the B.Sc. degree
in electrical engineering from the University of
Castilla–La Mancha, Spain, in 2011, the MSc degree
in industrial engineering from the University Charles
III of Madrid in 2014, and the PhD degree in
automation and robotics from the Technical Uni-
versity of Madrid (UPM), Spain, in 2019. His PhD
thesis, awarded with the distinction ”Cum Laude”
and the International Mention, won multiples prizes
including the Best PhD Thesis on Intelligent Trans-
portation Systems 2020 by the Spanish Chapter of

the IEEE-ITS Society. He is currently a Post-Doctoral Researcher in the Centre
for Automation and Robotics (CSIC-UPM), AUTOPIA Group, Madrid, Spain,
which he joined in 2013. He has been working on both national and European
research projects in the scope of autonomous vehicles. He has published and
peer-reviewed multiple journal and conference papers focused on this field.
His research interests include system modeling and simulation, intelligent
control, motion planning, and decision-making systems.
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