
Object-based Velocity Feedback for Dynamic Occupancy Grids
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Abstract— Dynamic occupancy grids (DOGs) have raised
interest in the last years due to their ability to fuse information
without explicit data association, to represent free space and
arbitrary-shape objects and to estimate obstacles’ dynamics.
Different works have presented strategies with demonstrated
good performance. Most of them rely on LiDAR sensors, and
some have shown that including additional velocity measure-
ments enhance the estimation. This work aims at showing
that velocity information can be directly inferred from objects
displacement. Thus, a strategy using velocity feedback and its
inclusion in the DOG is presented. The qualitative and quantita-
tive analysis of results obtained from real data experimentation
show a very good performance, specially in dynamic changing
situations.

I. INTRODUCTION

Perception of the environment is a challenging task, essen-
tial for autonomous driving. Occupancy grid [1] is a widely
used strategy to represent the environment that divides the
surroundings in cells containing an estimation about the
presence of objects in this location, i.e. the probability of
being occupied by an object. This strategy presents three
main advantages: (i) arbitrary-shape objects can be easily
represented, (ii) the areas of free or unknown space can also
be modeled and (iii) the information of different sensors can
be easily fused at a cell level. Nevertheless, a classical static
occupancy grid map does not permit to estimate the evolution
of dynamic environments.

The Bayesian Occupancy Filter (BOF), introduced in [2]
and reviewed in [3], addressed the aforementioned problem
relying on a generic Bayesian framework able to intrinsi-
cally manage uncertainty by updating a dynamic occupancy
grid, where occupancy and velocity probability distribution
functions (pdf) for each cell where estimated at each time
step. However, it presented high computational loads. Works
such as [4], [5], [6] tackled this problem by representing the
dynamic state of the cells with particles and differentiating
between occupied or unknown cells. The authors of [7] used
this particle realization, but modeled the dynamic estimation
problem in the random finite set domain, thus allowing a
generic and rigorous filter design.
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This work follows the paradigm proposed by [7], where
it was shown that an accurate DOG can be achieved from
laser data alone, but a faster convergence is achieved if radar
data is included. As already pointed out in [8], where the
dynamic state is estimated using recurrent neural networks
instead of particles, the assumption of independent cells in
the update step of the particles and the constant velocity
model usually assumed, leads to decreased performance in
dynamic changing scenarios, e.g. significant turn or acceler-
ation/deceleration maneuvers. As discussed in [6] the use of
velocity information, typically provided by radars, improves
the velocity estimation in these situations by guiding the born
of new particles and updating the weights.

Dynamic changes are widely found in autonomous driv-
ing scenarios, but every autonomous prototype is neither
provided with radar sensors nor with the resources to train
neural networks. To deal with these limitations, this work
proposes to compute velocity feedback measurements from
objects clustered in the DOG. Despite this calculation may
be less accurate than radar information, it will be shown that
it can approximately model the dynamic changes, improving
thus the convergence of the DOG.

Therefore, the main contributions of this work are:
• A strategy to compute velocity feedback from DOGs.
• The application of object-based velocity feedback as

velocity measurements.
The remainder of this paper is organized as follows.

Section II provides an overview of the DOG framework.
Section III explains the velocity feedback calculation based
on clustered objects displacement. In Section IV, the mea-
surement model defined for the computed velocity feedback
is presented. Qualitative and quantitative evaluations are
shown in Section V. Finally, Section VI summarizes the work
presented and provides and outlook for future work.

II. DYNAMIC OCCUPANCY GRID OVERVIEW

This work is based on the DOG presented in [6], [7],
but it is focused on velocity measurements calculation from
clustered objects location in different time steps. Therefore,
the implementation of the DOG exceeds the scope of this
paper. Hereunder, a brief introduction to the main workflow
is presented; the reader may refer to the aforementioned
articles for further details.

A. State representation

The state of grid cells is divided in two: occupancy state
and dynamic state. The occupancy state is represented in
terms of the Dempster-Shafer Theory of Evidence (DST)
[9], being the frame of discernment the occupied and free



events (Ω = {O, F}). Therefore, each cell contains a mass
for occupied m(O) and a mass for free m(F ). The dynamic
state is modeled by the particles within the cell. In order to
reduce computational cost, only occupied cells are populated
with particles. Hence, the posterior state of an individual
grid cell c at the discrete time step k is represented by the
particle set {xxx(i,c), w(i,c)}νc

i=1 – where νc denotes the number
of particles inside the cell, i the i-th particle and xxx and w
define the particle’s state and weight respectively – and the
mass for free mc

k(Fk). The relation between the occupied
mass and the set of particles is defined as:

mc
k(Ok) =

νc∑
i=1

wi,c
k (1)

B. Measurements
Associated with every cell, two types of measurements

z(k + 1) are expected:
• Observed occupancy measurement modeled in terms

of DST (mc
z(k+1)

: 2{O,F} → [0, 1]). Laser data is
commonly used to accomplish this task; in this article
the approach presented in [10] is used.

• Spatial measurements containing velocity information
(ϑc

z(k+1)
). An association probability (pcA) is also at-

tached to each measurement in order to model the
probability of corresponding to the grid cell c. These
measurements can be obtained from different sources:
[6] used Doppler measurements, [11] used V2X com-
munications and this article proposes the use of velocity
feedback.

C. Prediction
Occupied mass prediction is carried out by the particles.

The state of predicted particles is calculated applying a
constant velocity model and their weight is multiplied by
a persistence probability. Then, predicted occupied mass is
obtained with (1). In turn, the predicted mass for free is
modeled as in static grid maps, where its reliability decreases
as time passes. Since the sum of masses inside a cell cannot
exceed 1, the weights of particles are truncated and then the
free mass is limited accordingly.

D. Update
The update step is performed according to occupancy and

spatial measurements. The occupancy update is computed in
terms of DST using the Dempster-Shafer rule of combina-
tion, see [7]. The updated occupied mass is splitted in two
parts, one portion is used to update the weight of persistent
particles with (1) and the other is used to initialize new
particles’ weights.

The spatial update is performed afterwards on the per-
sistent particles. Each particle is weighted according to the
spatial likelihood function gc(k+1)(ϑz(k+1)

|x(k+1|k)) and the
association probability pcA,(k+1)

wi,c
p,(k+1) =

pcA,(k+1) · µ
c
A · w̃i,c

p,(k+1) +
(
1− pcA,(k+1)

)
· µc

Ā
· wi,c

p,(k+1|k)
(2)

with

w̃i,c
p,(k+1) = gc(k+1)(ϑ

c
z(k+1)

|xi,c
p,(k+1|k)) · w

i,c
p,(k+1|k) (3)

and being µc
A and µc

Ā
normalization factors. The super-

index i denotes the i-th particle and the sub-index p denotes
persistent particle.

Given the updated persistent particles, the statistical mo-
ments of grid cells are calculated as the weighted mean and
variance.

E. New particles and resampling

New particles are created in grid cells with updated occu-
pied mass reserved for this purpose. If spatial measurements
are associated with the cell, a portion of these new particles
– defined by the association probability – can be initialized
with respect to them. Otherwise, new states are chosen from a
Gaussian distribution with zero mean and standard deviation
dependant on the scenario.

Lastly, particles are resampled with a probability of being
drawn proportional to its weight. The weights of resampled
particles are set all equal and defined according to (1).

III. VELOCITY FEEDBACK

After the LiDAR-based update, the velocity feedback is
calculated at object-level. This step consists of two stages:
(i) object clustering and association between frames and (ii)
velocity computation based on object’s displacement.

A. Clustering and data association

Cells with an occupied mass higher than a threshold αo are
clusterized using a modified Connect Component Clustering
[12] in order to include the velocity information. In this way
cells are considered to belong to the same object if they are
neighbours inside a mask of certain size and their velocity
vector differs less than a threshold αv . These clusters are then
described at an object-level with a state including position
and velocity.

The velocity feedback is computed from the displacement
of objects from one time step to the next one. Therefore,
objects from previous and current time steps have to be
associated. To that end, an approach based on Global Nearest
Neighbour (GNN) [13] is used. The objects of the previous
time step are predicted to the current instant using a constant
speed model. Then a cost matrix between predicted and ob-
served objects is calculated using the Mahalanobis distance
[14]. Lastly the association is solved using the Munkres
algorithm.

B. Velocity calculation

For each object o associated with a previous object p, the
velocity feedback is computed as the two-dimensional vector
vvvo:

vvvo =
∆xxxl(o, p)

∆t
(4)

where xxxl defines the location of the object.
In this work three methods are suggested in order to

compute this displacement: (i) centroid, (ii) cross-correlation



(CC) and (iii) vehicle’s shape assumption (VSA). In the
following the three methods are introduced, followed by a
discussion about how they should be used.

1) Displacement by centroids: The centroid was sug-
gested in [5] as cluster state descriptor. Calculating the
displacement with centroids is simple, but as denoted in [15]
it is prone to errors due to the detected footprint change. This
influence may be reduced when using recursively estimated
occupancy since the change is slower, but it is still present.

2) Displacement by cross-correlation: In order to solve
the aforementioned centroid’s problem, [15] proposed to
compute the displacement between time steps by image
matching. The optimum location of an image template
within other reference image is computed based on the
cross-correlation coefficient metric. Following this proposal,
two binary images are created containing the cells of the
associated objects. Cells for which the LiDAR has modeled
occupancy are set to 1 and otherwise to 0. The current
time step image is used as template and the previous time
step image as reference. Through an iterative process, the
origin of template image is located over each pixel of the
reference image and a similarity score is computed using
cross-correlation:

S(k, l) = ∑M1
i=1

∑N1
j=1 T (i,j)R(k+i−1,l+j−1)[∑M1

i=1

∑N1
j=1 T (i,j)

]1/2[∑M1
i=1

∑N1
j=1 R(k+i−1,l+j−1)

]1/2 (5)

where T is the template image with size M1 ×N1, R is the
reference image with size M2×N2 and the pixel k, l defines
the moving origin of the template over the reference image.

This process results in a score-map S from which the
pixel with higher value is defined as the location of optimum
matching and, therefore, the displacement is obtained.

3) Displacement by vehicle’s shape assumption: It is a
common assumption to represent vehicles’ shape with rect-
angle bounding boxes. Moreover, if an object classification is
performed, an approximated box size can also be assumed.
This allows the estimation of the real-center of a vehicle
without being influenced by the size of the footprint detected
[16], [17].

In order to demonstrate the feasibility of this concept, a
simplified implementation of the strategy presented in [16]
is used to detect vehicles and assign boxes fixed size, but
others methods could be used (e.g. vision-based methods).
First, vehicles are detected among objects as those that have
presented a certain size and velocity over time using a multi-
object tracking. Then, according to the historical length and
width, a box of fixed size is assigned.

Given the vehicles’ classification and their corresponding
fixed size boxes, the center of the vehicle is estimated fitting
an oriented bounding box. This process is divided in two
steps: (i) orientation estimation and (ii) most visible side
based fitting.

The fixed box orientation is calculated as a weighted
average between the orientation of the velocity vector and
the orientation estimated from the detected footprint – in
this article a minimum bounding box fitting method based

on [18] is used. This combination provides a more robust
estimation than considering only one isolated orientation
estimation strategy. Indeed, on the one hand, the velocity
vector is accurate for dynamic objects moving straight, but
may have delay on turning vehicles and cannot be used on
static objects. On the other hand, the orientation computed
with the footprint is accurate when L-shapes are detected,
commonly seen in turning vehicles, but, with small foot-
prints its precision decreases and may fail in classifying the
sides corresponding to the length and width. An illustrative
example of the advantages of this fusion is given in Figure
1a.

In this way, the orientation of the fixed box is computed
as:

θb =
βsθs + βvθv
βs + βv

(6)

where θ and β denote the orientations and weights computed
from the velocity vector v and the shape of the detected
footprint s, respectively. The weights β are assigned as:

βs =

{
βmax
s , Ls = 1

βmin
s , Ls = 0

(7)

βv =

{
βmax
v , |v| ≥ vd

βmax
v |v|/vd, |v| < vd

(8)

where Ls is a binary variable defining whether an L-shape
has being detected or not, vd is a threshold that defines the
velocity of dynamic objects and super-indexes refer to the
maximum and minimum weight set as design parameters.

Then, the fixed box is fitted on the footprint searching for
the most likely reference point. This point is computed in
base of the theoretically visible sides of a minimum bounding
box oriented with θb (see Figure 1b).

The theoretical visibility of a side i is defined by the angle
(θivisible) formed by the side’s normal vector (nnni) and the
vector between the center of this side and the origin of the
perception reference system (llli).

θivisible = arccos

(
nnni · llli

|nnni| |llli|

)
(9)

A side is considered as theoretically visible if
θvisible < 90o. The reference point is inferred with
respect to the number of visible sides as follows:

• If only one side is visible, the reference point is defined
at the center of this side.

• If two sides are visible, the reference point is defined
at the corner.

Finally, the fixed box is located at the reference point with
the orientation θb. The displacement is obtained comparing
the center of the box at each time step.

4) Displacement method discussion: Table I shows an
illustrative comparison of the advantages and disadvantages
of the three methods. The centroid method is simple but,
as already mentioned, suffers when the detected footprint
changes of size. The CC method performs better in relation
to this problem, but it does not model orientation variations.
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Fig. 1: Estimation of the fixed box location.

The VSA method handles both the footprint change and
turns; nevertheless a vehicle classification strategy is needed
and its performance may be poor for static small objects.

Therefore, the strategy suggested is a combination of the
cross-correlation and vehicle’s shape assumption methods.
The CC method is applied generally and, whenever a dy-
namic vehicle is detected, it is substituted by the VSA
approach.

TABLE I: Simplified comparison of the displacement

Method Centroid CC VSA
Footprint change 0 ++ ++
Turning objects + 0 ++
Static objects + ++ +
Simplicity ++ + 0

IV. INCORPORATING VELOCITY FEEDBACK
MEASUREMENTS INTO DOG

Given an object o for which a feedback velocity vector
has been estimated, a spatial measurement ϑo

zk+1
and prob-

ability of association poA can be defined and assigned to the
corresponding clusterized grid cells.

Following the strategy presented in [11], the likelihood of
each particle i with respect the measurement ϑo

zk+1
in the

cell c is modeled with the bivariate Gaussian distribution:

gc(k+1)(ϑ
o,c
z(k+1)

|xi,c
p,(k+1|k)) =

1

2πσo,c
vx σo,c

vy

√
1−(ρo,c)2

exp
(
− 1

2(1−(ρo,c)2)

[
(Co,i,c

vx )2 + (Co,i,c
vy

)2

−2ρo,c (Co,i,c
vx )2 (Co,i,c

vy )2
]) (10)

with

ρo,c =
(σo,c

vxy
)2

σo,c
vx σ

o,c
vy

(11)

Co,i,c
vx

=
vi,c
x −vo,c

x

σo,c
vx

; Co,i,c
vy =

vi,c
y −vo,c

y

σo,c
vy

(12)

where vix and viy denote the particle’s velocity vector and
ϑo
zk+1

is assumed as gaussian, being vox and voy the mean
velocity in x and y, defined by the calculated velocity
feedback, and σo

vx , σo
vy and σo

vxy
the standard deviation and

covariance, defined as design parameters.
Particle initialization can be performed likewise, the dy-

namic state of associated new particles can be drawn from a
Gaussian distribution N (vo, σo).

The probability of association poA is the same for all
object’s cells and is defined by the quality of the matching
between objects.

po,cA = min

(
pmax
A , 1− C(o, q)

Cmax

)
(13)

where C denotes the cost of the matching (as explained
in Section III-A), Cmax is the maximum cost allowed
for matching and pmax

A is a design parameter included to
constrain the maximum association, modeling the possibility
that the matching is incorrect. o and q refer to the associated
objects from consecutive time steps.

V. EXPERIMENTAL RESULTS
The work proposed in this paper has been validated on

tests with two automated vehicle prototypes. These vehicles
have proprioceptive and exteroceptive sensors for localiza-
tion and environment perception. In order to correlate data
among vehicles, Global Navigation Satellite System receivers
(GNSS) are used for time synchronization

For all tests the vehicles were manually driven, with the
perceiving vehicle following the sensed one along its path.
The perceiving vehicle combines one IBEO-Lux and two
VLP-16 LiDAR sensors for perception. The leading vehicle
records its own state, which is then used as ground truth. As
already explained, the DOG performs properly in most of the
cases, being the dynamic changing situations where velocity
estimation complexity arises. Thus, the recorded datasets
focus in these situations, e.g. roundabouts. An example of
a test route is shown in Figure 2.
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Fig. 2: Example route for dataset. The start and the end are
denoted with + and × respectively.

The parametrization of the perception framework is set as
follows:

• DOG: the size of the grid map is 512×512, with a cell
size of 0.15m and approximately 100 000 particles. A



road map is used to filter every obstacle outside the
road, therefore particles population is mainly used to
model the detected vehicle.

• Clustering: the clustering parameters are defined as:
αo = 0.2 and αv = 2 m/s. The mask size is set to 5
pixeles.

• VSA: the velocity threshold for dynamic objects is set
as vd = 1 m/s. An L-shape is detected when both sides
are larger than 1 m. The boundary weights are set as
βmax
v = 0.5, βmax

s = 1 and βmin
s = 0.2. The fixed size

for vehicles is defined as 4.5 m length and 2 m width.
• Spatial measurements: the standard deviation velocity

defined for the feedback velocity is σv = 1 m/s. Covari-
ance is assumed to be zero. The maximum probability
association is set as pmax

A = 0.5.

A. Qualitative results

In this section, two complex cases are analyzed, showing
how the velocity information improves the estimation.

Figure 3 shows an example where the detected vehicle
changes its state from static to dynamic. Free space is drawn
in white, unknown space in gray and occupied space in
black or in color. Occupied cells vary from black to coloured
depending on their speed; the brighter the cell the higher the
speed, while the colour depends on the orientation. Lastly,
the green vector denotes the ground truth velocity and the
red vector the estimated velocity at an object-level.

This case is considered as complex due to the large
footprint detected. If the DOG is fed only with observed
occupancy measurements, static particles remain with high
weights until no occupied mass is modeled at their position.
On the contrary, if spatial measurements, in addition to the
occupancy measurements, are used to to feed particles’ birth
and update, a faster convergence over the real velocity is
obtained. This can be clearly noticed at instant b), where the
DOG without velocity information (left) estimates most of
the cells as static, while the DOG with velocity information
(right) has modeled most of them as dynamic. In this case,
the feedback velocity is computed with the CC method, since
the object is not dynamic yet.

Figure 4 shows a 90◦ turn. Cells’ occupancy state is
coloured in gray scale and dynamic state is denoted with blue
vectors. The green vector depicts the ground truth velocity
and the red vector the velocity estimated at an object-level.
In the DOG with velocity information, the magenta box
and dashed vector represent the feedback estimation. The
complexity of this situation comes from two factors: (i)
particles predict their state based on a constant velocity
model, thus this dynamic change has to be mostly estimated
by new particles with the new dynamic state and (ii) the
detected vehicle occludes the straight path, therefore old
particles moving straight are not suppressed as fast as if free
space were detected. These facts can be clearly noticed in
instants b) and c). When no velocity information is used, the
turn is mainly modeled by the new cells detected at the left
of the vehicle, while the vector of old cells remain orientated
towards the occluded straight path. In this case, the feedback

a)

b)

c)

d)

-90

0

90

180

Fig. 3: Start moving situation, comparison with and without
velocity information, right and left columns respectively.

velocity is computed with the VSA method, which is able to
approximately model the vehicle behaviour. Indeed, results
shows a smaller delay in the velocity estimation at an object-
level and a smaller variance in the velocity vectors associated
with the cells.

B. Quantitative results

A quantitative evaluation has been conducted using 5
different datasets which sum up to ten minutes approxi-
mately. Sensors data is collected at a rate of 12.5Hz. These
datasets contain routes as the one shown in Figure 2 and
situations similar to the qualitative tests of Section V-A. The
results of the DOG using only occupancy measurements (Oc)
are compared to the results obtained using occupancy and
spatial measurements (Oc&Vel). Three methods for velocity
feedback calculation have been evaluated: (i) computed with
centroids, (ii) computed using CC and (iii) computed with
the CC/VSA combination proposed in section III-B.4.

In order handle the randomness of the particle filter, the
same random numbers are used for all methods and each
dataset has been computed twice using a different set of
random numbers.

Figure 5 and Table II show the error obtained as boxplots
and summarized in terms of mean absolute error (MAE) and
root mean square error (RMSE), respectively. The results are
evaluated with respect the velocity module and orientation,
both computed at an object-level as the weighted mean of all
particles gathered inside the object’s cells. Since orientation
is computed from the velocity vector, its estimation for static
objects is meaningless, thus the orientation error is computed
only for those iterations where the sensed vehicle drives
faster than 1 m/s.

As already explained, the DOG fed only with occupancy
measurements is able to converge over the real object’s
speed. However the convergence time can be reduced if
velocity information is included. Therefore, results show that
the general error is low, but the use of velocity feedback



Fig. 4: Turning situation, comparison with and without
velocity information, right and left columns respectively.

further reduces this error. Regarding the displacement calcu-
lation methods, the CC/VSA method obtains the best results,
as expected, while the CC performs similar to the centroid
method in terms of velocity estimation, but better in terms
of orientation.

TABLE II: Error quantitative evaluation.

Measurements Oc Oc & Vel
Centroid CC CC/VSA

Velocity MAE (m/s) 0.490 0.256 0.262 0.209
Velocity RMSE (m/s) 0.638 0.340 0.349 0.293
Orientation MAE (o) 4.760 3.568 3.260 2.697
Orientation RMSE (o) 7.330 5.337 5.028 3.963

VI. CONCLUSIONS
This work presents a velocity feedback strategy in order

to enhance the velocity estimation of dynamic occupancy
grids. Previous works demonstrated that the use of radar data
improves the estimation convergence; this paper proposes to
compute velocity measurements from objects displacement
when no velocity sensor is available. Three methods to
calculate the displacement are discussed and evaluated using
real data. Qualitative and quantitative results validate the
feasibility of this strategy, showing a faster convergence in
dynamic changing situations.

Future work will address the improvement of data associa-
tion and clustering by using multi-object tracking strategies.
Additionally, experimentation will be extended to more pop-
ulated scenarios.
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