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Jerk-limited time-optimal speed planning for
arbitrary paths

Antonio Artuñedo, Jorge Villagra, Jorge Godoy

Abstract—Both path and speed planning play key roles in
automated driving, specially when a certain comfort level is
required. This paper proposes a human-like speed planning
method for already defined paths while minimizing travel time.
The proposed method is able to compute a time-optimal speed
profile that meet the given constrains with regard to speed,
acceleration and jerk. For this purpose, an initial acceleration-
limited approach is introduced. This algorithm serves as a
starting point for the subsequent jerk-limited speed planning.
Moreover, fallback strategies are included to manage critical
driving situations where initial or final conditions cannot be
met. The proposed approach has been tested and validated
in an experimental platform through extensive trials in real
environments. Its performance has been evaluated both in terms
of quality of the computed speed profiles and with respect the
required computing time.

Index Terms—autonomous vehicles, motion planning, jerk-
limited speed planning, comfortable automated driving.

I. INTRODUCTION

IN recent decades, research interest in autonomous driving
has increased considerably and significant progress has

been made in the technologies involved in this area. In addition
to ensuring safe driving, it is expected that the driving of au-
tonomous vehicles will be similar to that of human drivers, i.e.
smooth and comfortable for the vehicle occupants. Although
enormous research efforts have been made on motion planning
techniques to enable autonomous vehicles to reach a given
destination safely, the smooth behavior of automated vehicles
remains a challenge, especially in medium and high speed
environments

State-of-the-art decision-making architectures for automated
vehicles are typically structured into global route planning,
behavioural/manoeuvre planning and local motion planning.
The latter functionality is of utmost importance as it has to
generate a safe and feasible trajectory for the vehicle control
system [19].

Automated driving requires parameterizable planning meth-
ods that enable the adaptability of the vehicle speed profile
based on the driving scene understanding and predictions of
the nearby environment. Although safety is the most important
aspect when designing planning algorithms, comfort should
also be considered. In this regard, it is important to note
that the main factors contributing to uncomfortable driving
are high levels of jerk and acceleration [6, 26], having jerk
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a stronger influence than acceleration [7]. Moreover, jerk-
limited trajectories increase the similarity between automated
and human-driven driving. Although several algorithms for
obtaining jerk-limited profiles can be found in the literature,
most of them are either limited to unmanned aerial vehicles
or low speed ground vehicles, or make extensive use of
iterative or optimization processes to obtain near-optimum
speed profiles, or can only be applied to path defined through
specific geometric primitives.

With the aim of producing human-like speed profile for
already determined paths, in this paper we propose a jerk-
limited speed planning method for arbitrary paths. The pro-
posed algorithm is able to compute a time-optimal speed
profile that meet the given constrains with regard to speed,
acceleration and jerk.

The main contributions of this work are threefold: (i)
the proposed time-optimal speed planning algorithm is path
primitive agnostic while considering kinodynamic constraints
of the vehicle. Even curvature of the path is not needed if
the speed limit profile already consider lateral acceleration
constraint; (ii) neither interpolation on the path or speed
profile nor optimization algorithms are required, resulting in
a computational efficient solution; (iii) the proposed approach
introduces fallback strategies to handle constraints when initial
and final conditions cannot be met.

The paper is structured as follows: In section II similar state-
of-the-art approaches are reviewed. Section III describes the
acceleration-limited approach while section IV focuses on the
jerk-limited speed profile generation algorithm. In section V,
the results of the trials carried out in a real environment
are presented and analyzed. Finally, section VI draws some
concluding remarks.

II. RELATED WORK

Motion planning problem has been one of the main focus of
the robotics research in last decades. Although some existing
approaches jointly address both path and speed planning [31],
the complexity in obtaining safe and feasible trajectories
makes this problem often divided into two different proce-
dures: (i) path planning in order to compute collision free paths
and feasible in terms of kinematic constraints, and (ii) speed
planning for computing speed profiles for a given path that
satisfies dynamic feasibility and comfort requirements, taking
into account vehicle constraints.

Rather than speed planning, most of the attention in motion
planning research has focused on different aspects of path
planning such as obtaining optimal paths with regard to path
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length or curvature [2, 19, 9]. Nevertheless, speed planning ap-
proaches for on-road autonomous driving are recently gaining 
considerable attention.

Some jerk-limited speed planning methods can be found in 
literature for different robotic applications such as manipula-
tors [17, 12, 23], or unmanned aerial vehicles [13]. In [16], 
an algorithm to find an achievable acceleration-limited speed 
profile considering the dynamics of the vehicle is applied to 
obtain the minimum time traversal of a given path, using 
optimization techniques. The authors obtained speed profiles 
each 10 ms on paths defined through 50 points. A similar 
approach is also used in [30], where a strategy to find a mini-
mum time speed profile traveling along a fixed path subject to 
the vehicle dynamics constraints, slip circle constraints, and 
actuator limits is proposed. In [14], authors use quintic Bézier 
curves to generate speed profiles considering bounding speed 
and acceleration.

Alternatively, some works focus on jerk-limited speed plan-
ning. The approach proposed in [29] is able to compute 
jerk-limited speed profiles given piecewise paths composed 
of clothoids, arcs of circles and straight lines. S-curve equa-
tions [17] are applied to each section of the path to achieve 
speed and acceleration continuity. In [20], the jerk-limited 
speed planning problem is stated as a non-linear and noncon-
vex one. To efficiently solve it, authors propose to use linear 
approximations at different stages that can be solve easily 
solved. In [28], a set of speed profiles is generated using 3rd 
order polynomial spline in the time domain. Then, a selection 
procedure discards those speed profiles that does not meet the 
speed and longitudinal acceleration limits. A recent work [22] 
proposes an heuristic approach for jerk-limited speed planning 
in laser guided vehicles for warehouse environments. This 
algorithm needs to be run recursively to reach a time-optimal 
solution and it is limited to 9 constant-jerk intervals in a 
trajectory.

Instead of generating trajectories for subsequent tracking, 
other existing approaches rely on model-predictive control 
(MPC) techniques. These approaches jointly solve the problem 
of planning and control by generating a set of future control 
actions that satisfy a set of constraints [4, 27, 8, 18] with 
regard to safety and comfort. MPC approaches are often 
computationally expensive as an optimization problem must 
be solved for each prediction step. As a result, to achieve 
acceptable run times, time horizon cannot be too long, which 
reduces the anticipation capability of the trajectory. To address 
these limitations, other approaches [11, 3, 28, 30, 15] based 
on long-term motion planning are often used to provide larger 
trajectories that increase vehicle anticipation and thus prevent 
sudden events from abruptly changing the trajectory.

As reviewed above, most of the speed planning approaches 
for autonomous driving bound accelerations and try to mi-
minize jerk instead of bounding it. Moreover, those that 
limit jerk do so in specific situations, obtain non-time-optimal 
solutions and often apply computationally expensive methods. 
Besides, the limited time horizon and computation cost of 
MPC-based approaches are not yet able to cope with jerk-
limited speed profiles generation for predefined paths in a real-
time setting.

III. ACCELERATION-LIMITED TIME-OPTIMAL SPEED
PLANNING

Before calculating a jerk-limited speed profile for a given
path, the proposed approach in this work computes an
acceleration-limited speed for each point of the trajectory.
This auxiliary speed profile will be used both by the jerk-
limited speed planning algorithm and to perform anticipatory
reachability estimation, as explained in section IV-C. Indeed,
in addition to the speed planning approach proposed in [1], this
algorithm includes a fallback strategy to avoid speed profile
discontinuities when initial an final speeds cannot be met with
specified acceleration constraints.

Based on Pontryagin’s Maximum Principle, time-optimal
trajectories are assumed to be bang-bang in this work (see e.g.
[21] for a similar consideration). As a result, the time-optimal
speed profile for a predefined path follows successively maxi-
mum and minimum acceleration profiles while considering the
given speed and acceleration constraints.

The acceleration-limited speed planning strategy comprises
the computation of a speed limit curve and a subsequent
algorithm for acceleration limiting. Both steps are detailed in
the following subsections.

A. Speed limit curve

The speed limit curve sets a maximum velocity value at
each point of the path taking into account different speed
and acceleration constraints that can come from regulatory
limits (maximum speed), comfort constraints (maximum com-
fort speed, acceleration and jerk) and dynamic constraints
(available engine torque, sliding, ground contact and tip-over
constraints) [25].

In this work, the speed limit curve has been used to con-
sider the maximum speed and maximum lateral acceleration.
However, the remaining constraints mentioned above can be
also used to impose further limits to be taken into account in
the proposed speed planning algorithm.

B. Acceleration-limited speed planning algorithm

The speed profile is calculated over a given path P (x, y, κ),
composed of a coordinate list of n two-dimensional points and
curvature. This speed profile must comply with the constraints
listed in table I, i.e. limit both longitudinal and lateral accel-
erations and linear speed, as well as impose initial and final
speed. In other words, the goal of this step is to find a mapping
of a linear speed vi and a longitudinal acceleration ai for each
point i of P , taking into account the following constraints:

0 < vi < vmax

alongmin < ai < alongmax

|alati | < alatmax

v0 = vini

vn = vend

(1)

Algorithm 1 shows the complete procedure to obtain an
acceleration-limited speed profile associated to a given path.
The speed profile calculation is performed in several stages:
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Symbol Description
vini Initial speed
vend Final speed
vmax Maximum allowed speed along the path
alatmax Maximum lateral acceleration
along
max Maximum positive longitudinal acceleration

along
min Maximum negative longitudinal acceleration

TABLE I
PARAMETERS FOR ACCELERATION-LIMITED SPEED PROFILE GENERATION

Algorithm 1 Acceleration-limited speed planning algorithm
1: procedure AL-SPEEDPLANNING(P , vini, vend, vmax,
alongmin , alongmax, alatmax)

2: vSLC ← f(P (κ), vini, vend, vmax, a
lat
max)

3: ∆s← f(P (x, y)) . Distances between path points
4: a1,...,n ← f(vSLC ,∆s) . Obtain acceleration
5: for i← 1, n− 1 do . Limit maximum positive

acceleration
6: if ai > alongmax then
7: vi+1 ← f(vi, ai, ai+1,∆si)
8: ai ← alongmax

9: ai+1 ← f(vi+2, vi+1,∆si+1)
10: end if
11: end for
12: if vn < vend then
13: afb ← f(∆vfb,∆sfb)
14: FALLBACKFINALSECTION(afb)
15: end if
16: for i← n− 1, 1 do . Limit maximum negative

acceleration
17: if ai < alongmin then
18: vi ← f(vi+1, ai, ai+1,∆si)
19: ai ← alongmin

20: ai−1 ← f(vi, vi−1,∆si−1)
21: end if
22: end for
23: if v0 < vini then
24: afb ← f(∆vfb,∆sfb)
25: FALLBACKINITIALSECTION(afb)
26: end if
27: return v, a . Return speed and acceleration for P
28: end procedure

1) The first step of algorithm 1 is to compute the speed
limit curve, based on the maximum speed vmax and
the maximum lateral acceleration alatmax. The maximum
allowed speed vSLC is computed using centripetal force
equation

vSLC
i = min{vmax,

√
alatmax

|κi|
} (2)

where (κi) is the curvature of the given path (P ) at a
specific point i.

2) After that, initial and final speeds (vini and vend) are im-
posed and the acceleration profile is computed assuming
uniform acceleration between two consecutive points of
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Fig. 1. Example of acceleration-limited speed planning

the path:
vi =

√
v2i−1 + 2ai∆si (3)

where ∆si is the distance between points i− 1 and i of
the path P .

3) Then, the accelerations computed for each path point
are traversed forward in order to verify that they are
lower than the maximum acceleration value (alongmax). In
case the acceleration at point i overcomes the limit, it is
bounded to the maximum value and the speed at point
i+ 1 is recalculated using Eq. (3).

4) Finally, the same procedure followed in the previous step
is performed backwards imposing a deceleration limit of
alongmin along the whole path.

Fig. 2 shows an example of the acceleration-limited speed
planning over a 289.2m path (see Fig 1) with the following
constraints: alatmax = alongmax = 1.8m/s2, alongmin = −2.5m/s2,
vini = vend = 0km/h and vmax = 50km/h. As can be seen,
a smooth speed profile is generated while limiting longitudinal
and lateral accelerations, as well as guaranteeing initial, final
and maximum speed.

C. Fallback strategy for acceleration-limited speed planning

Lines 13-15 and 23-26 of Alg. 1 are devoted to verify if
initial an final speeds can be reached with the given maximum
acceleration constraints, avoiding thus discontinuities at the
beginning or the end of the speed profile.

In the critical cases where initial and final speeds cannot be
met, the longitudinal acceleration that allows to satisfy these
end-point speed constraints (afb) is found applying Eq. 3:

afb =
v2ffb − v20fb

2∆sfb
(4)

where v0fb, vffb and ∆sfb are the initial and final speeds
and the length of the fallback section, respectively. Then a
new acceleration-limited speed profile is computed using the
calculated fallback acceleration.

In the schematic example of Fig. 3, vini cannot be met
with the given acceleration constraints. In this case, alongmin does
not allow vini to be reached when performing the backwards
correction of the algorithm. To guarantee speed continuity, afb
is found and the initial section of the speed profile is computed.
A analogous procedure is applied when vend cannot be met.
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Information about whether the initial and/or final section
have been recomputed is stored and given an additional output
of the algorithm. This information is helpful to identify fall-
back actions in the jerk-limited speed planning, as is explained
in section IV-C.

IV. JERK-LIMITED TIME-OPTIMAL SPEED PLANNING

The acceleration limitation in the speed planning as pre-
sented in the previous section is a fast and effective method
for speed planing while meeting kinodynamic constraints that
can be considered in the speed limit curve. However, abrupt
changes in acceleration could cause uncomfortable behaviour
inside the vehicle. In these cases when comfort becomes more
relevant (e.g. in passenger transportation), the jerk limitation
becomes a need.

To meet the requirement of time-optimality when jerk is
constrained, time-optimal speed profile must be generated
successively applying maximum and minimum jerk profiles
[21], while considering the given speed, acceleration and jerk
constraints along the trajectory. However, it is reported in
the literature [24, 21] that bang-bang approaches based on
Pontryagin’s Maximum Principle fails at singular arcs in which
large amounts of continuous jerk switches are required, thus
generating inaccurate results. The proposed approach deals
with this kind of singularities by applying the maximum
possible jerk, acceleration and speed at each of the points
defining the trajectory.

In this section, an algorithm for jerk-limited speed planing
is proposed. The objective of the algorithm is to find a
mapping of speed vi and acceleration ai for each point i of the

path P , taking into account the following constraints, whose
parameters are listed in Table II:

0 < vi < vmax

alongmin < alongi < alongmax

|alati | < alatmax

jmin < ji < jmax

v0 = vini

vn = vend

a0 = aini

an = aend

(5)

Symbol Description
vini Initial speed
vend Final speed
aini Initial acceleration
aend Final acceleration
vmax Maximum speed
alatmax Maximum lateral acceleration
along
max Maximum positive longitudinal acceleration

along
min Maximum negative longitudinal acceleration

jmin Minimum jerk
jmax Maximum jerk

TABLE II
PARAMETERS FOR JERK-LIMITED SPEED PROFILE GENERATION

The following subsections focus on introducing the jerk-
limited motion equations used, the detailed description of the
algorithm and the explanations of the fallback strategy used
when initial conditions cannot be met.

A. Constant jerk motion

Since jerk must be limited along the whole path, a constant
jerk motion is considered between two consecutive points
(i − 1 and i) of the given path P . This constant jerk motion
along time is described, for each point i, by the following
expressions:

si = si−1 + vi−1t+
1

2
ai−1t

2 +
1

6
jit

3 (6)

vi = vi−1 + ai−1t+
1

2
jit

2 (7)

ai = ai−1 + jit (8)

where s, v, a and j are the displacement, speed, acceleration
and jerk, respectively, and t the time. Nevertheless, these
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equations cannot be directly applied to the stated problem as
they are defined in function of time and time independence
is required since the position of every point in path P is
invariable (it is an input). Moreover, the speed limit curve
also contains speed constraints associated to each point.

Hence, to avoid a explicit time dependence, Eq. (6) can be
rearranged replacing time t by its value in (8):

∆s =
(ai − ai−1)3

6j2i
+
ai−1(ai − ai−1)2

2j2i
+
vi−1(ai − ai−1)

ji
(9)

The problem is reduced to find a value ai in (9) for each
pair of points (i−1 and i), given: ∆s = si−si−1, vi−1, ai−1
and ji, such that the constraints specified in (5) are met.

Rectilinear motion is assumed between Pi−1 y Pi : i ∈
[1, n]. As a result, the path P is handled as a set of n − 1
rectilinear motions with constant jerk, subject to speed, accel-
eration and jerk constraints.

B. Jerk-limited speed planning algorithm

To solve the stated problem, algorithm 2 is proposed.

Algorithm 2 Jerk-limited speed planning algorithm
1: procedure JL-SPEEDPLANNING(P , vini, vend, vmax,
aini, aend, alongmin , alongmax, alatmax, jmax, jmin)

2: v, a ← AL-SPEEDPLANNING(P , vini, vend,
vmax,alongmin , alongmax, alatmax)

3: AL-CONSTRAINTSCHECK(v, vini, vend)
4: j ← f(v, a,∆s)
5: ilocal−min ← COMPUTELOCALMINIMA(v)
6: for all i ∈ ilocal−min do
7: v, a, j ← FIXLOCALMINIMUM(v, a, j, i)
8: end for
9: ilocal−max ← COMPUTELOCALMAXIMA(v)

10: for all i ∈ ilocal−max do
11: v, a, j ← FIXLOCALMAXIMUM(v, a, j, i)
12: end for
13: return v, a, j . Return speed, acceleration and jerk

for P
14: end procedure

The first step of the proposed algorithm is to find local min-
ima of the speed limit curve in order to build up a jerk-limited
sections of the speed profile. To that end, the acceleration-
limited speed planner (Alg. 1) is initially used, leveraging on
its simplicity and computational efficiency. This step is not
strictly necessary, as local minima could be extracted directly
from the speed limit curve. However, the geometry of the
path can result in a great variety of possibilities, leading to
significant complexity differences when using the speed limit
curve. The output of Alg. 1 typically provides a lower amount
of local minima and consequently a lower and more stable total
execution time while achieving the same results. To illustrate
that effect, Fig. 2 shows a case in which 10 local minima would
be obtained from the speed limit curve (red line), while after
applying Alg. 1, only 4 local minima are attained (blue line).

Once every local minima is identified, they are used to
generate jerk and acceleration limited sections of the speed

Algorithm 3 Procedure for local minimum fix
1: procedure FIXLOCALMINIMUM(v, a, j, imin)
2: flagsol ← false
3: while flagsol = false do
4: for i← imin, n− 2 do
5: if ai < alongmax then
6: jaux ← jmax

7: aaux, vaux ← f(ji, ai, vi,∆si)
8: else
9: jaux ← 0

10: aaux ← ai
11: vaux ← f(vi, ai+ 1,∆si)
12: end if
13: if vaux > vi+1 then . Speed profile reached
14: break
15: else
16: vi+1 ← vaux
17: ai+1 ← aaux
18: ji ← jaux
19: jj+1 ← f(ai+1, ai+2, vi+1,∆si+1)
20: end if
21: end for
22: if i = n− 2 & vi+1 < vend then . vend not met
23: jmax ← jmax + ∆jfb
24: else
25: flagsol ← true
26: end if
27: end while
28: flagsol ← false
29: while flagsol = false do
30: for i← imin, 2 do
31: if ai > alongmin then
32: jaux ← jmax

33: aaux, vaux ← f(ji, ai+1, vi+1,∆si+1)
34: else
35: jaux ← 0
36: aaux ← ai+1

37: vaux ← f(vi+1, ai,∆si)
38: end if
39: if vi > vSLC

i then . Speed profile reached
40: break
41: else
42: vi ← vaux
43: ai ← aaux
44: ji ← jaux
45: ji−1 ← f(ai, ai−1, vi,∆si)
46: end if
47: end for
48: if i = 0 & vi < vini then . vini not met
49: jmin ← jmin −∆jfb
50: else
51: flagsol ← true
52: end if
53: end while
54: return v, a, j
55: end procedure
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Fig. 4. Acceleration discontinuity fix at speed local minimum

profile (Alg. 3). An illustrative example of this procedure is
shown in the speed profile in Fig. 4, where dashed lines shows
the speed profile before computing Alg. 3 on the minimum
at 20.5 m, and the result after this procedure is shown in
continuous lines. This procedure sets null acceleration at
the location of each local minimum speed (except at the
initial and final point of the path) and computes two speed
profile sections from local speed minimum, one forward and
another one backward. The maximum positive allowed jerk
(jmax) is applied until the maximum allowed accelerations
are reached (maximum positive acceleration amax in forward
section and maximum negative acceleration amin in backward
section) or the acceleration limited speed profile is reached.
Thus, the maximum jerk of the whole trajectory is limited
to jmax. In the example in Fig. 4, the maximum positive
allowed jerk (jmax) is set to 0.5m/s3, amax = 1.8m/s2

and amin = −1.8m/s2. It can be seen that, on the forward
speed profile computation, the maximum positive acceleration
is reached at 31 m and the speed reaches acceleration limited
speed profile at 32 m. Starting from local minima at 20.5 m,
the backward computation is carried out until the computed
speed reaches acceleration limited speed profile at 8.6 m. In
this case, the maximum negative acceleration is reached at
10.5 m. In this example it can also be seen that, although the
acceleration has been limited to the maximum allowed values
when computing Alg. 1, the positive jerk values exceeded
jmax before computing Alg. 3. Nevertheless, as a result of
applying this algorithm, it is ensured that the maximum jerk
obtained in this section is limited to jmax. By applying this
procedure to all identified local minima, it is consequently
ensured that jmax is not exceeded across the entire speed
profile.

Once the maximum jerk has been limited, a subsequent
computation is carried out to find local maxima of the speed
profile. Alg. 4 is then applied at each local maximum (labelled
as imax) to correct the speed profile by limiting the jerk to
the minimum allowed jerk (jmin).

Alg. 4 is illustrated in Fig. 5, which depicts the speed,
longitudinal acceleration and jerk before (in dashed lines)
and after (continuous lines) applying Alg. 4. This algorithm
consist of an iterative procedure that, starting from point
imax − 1, imposes the minimum allowed jerk jmin to find
the closest point before imax where to start applying jmin

while satisfying acceleration and speed continuity at the end

Algorithm 4 Procedure for local maximum fix
1: procedure FIXLOCALMAXIMUM(v, a, j, imax)
2: k ← imax + 1
3: for i′o ← imax − 1, 2 do
4: while ik ∈ [imax, n] do
5: aaux ← f(jmin...)
6: vaux ← f(vi+1, aaux, ji)
7: if vaux < vSLC

k & aaux < ak then
8: flagsol ← true
9: io = i′o

10: break
11: end if
12: ik ← ik + 1
13: end while
14: end for
15: if flagsol then
16: COMPUTESECTION(io,ik)
17: else . Initial/final conditions can not be met
18: jfb ← j + ∆jfb
19: FIXLOCALMAXIMUM(v, a, j′, imax)
20: end if
21: return v, a, j
22: end procedure
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of the section being computed (index ik in Alg. 4). Three
iterations of this procedure are represented in Fig. 5. The first
iteration shown starts from point i′o and reach the current speed
profile at i′k (dotted line), where an acceleration discontinuity
is found. A subsequent iteration starts from i′′o and reach the
current speed profile at i′′k but still the acceleration presents
a discontinuity. Finally, a solution that meets the acceleration
and speed continuity is found from io to ik and the final jerk,
acceleration and speed for that section is computed. Thus, it
is guaranteed that jmin is not exceeded when a solution for
that section is found.

Note that it is possible to adapt the speed planning be-
haviour over the path based on comfort (e.g. considering
passengers driving preferences allowing them to choose the
driving smoothness level) or safety criteria (e.g. considering
high deceleration values to automatically avoid collisions) by
varying the speed planner parameters (alatmax, alongmax, alongmin and
vmax).

In some cases, initial and/or final conditions may not be
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satisfied depending on the given constraints for jerk-limited
speed planning. In these cases, fallback constraints are used
to compute the initial/final section. The fallback strategy is
detailed in the following subsection.

C. Fallback strategy in jerk-limited speed planning

As indicated in line 3 of Alg. 2, the jerk-limited planning
algorithm runs Alg. 1 at the beginning, thus ensuring that
initial and final speeds are met. However, in some specific
case initial/final speeds and accelerations could not be met
after applying jerk limitations. Thus, when the initial or final
path point is reached while calculating a speed profile section
with positive jerk (Alg. 3), it is firstly checked that the section
being computed has not been previously computed by applying
a fallback acceleration as described in section III-C. If it is
not the case, it is assumed that initial acceleration (aini) and
jerk limits cannot be met in this section and the speed profile
in this section remains the same. In other words, if a less
restrictive acceleration has had to be imposed in the fallback
calculation when limiting acceleration (as shown in Fig. 3),
lower speeds would be computed if jerk were limited in that
section, making it impossible to reach the initial/final speed.
Otherwise, the jerk-limited calculation is carried out. After
that, it is checked that initial and final speeds are greater
than vini, vend, respectively. If not, flagsol in Alg. 3 is not
activated and a fallback maximum jerk is used to recompute
that section. The fallback maximum jerk is computed by
increasing the maximum allowed jerk a given amount ∆jfb
so that jmax = jmax + ∆jfb. This fallback procedure is
iteratively computed until a solution is found or a maximum
jax is reached (jmax

jb ). In the latter case, the acceleration-
limited profile for this section is conserved, assuming that jerk
cannot be limited in this section.

An illustrative example of this strategy is shown in the
speed profile section in Fig. 7a. It can be seen that the initial
attempt to compute the backward section of the local minimum
end with an initial speed lower than vini. Then, a fallback
maximum jerk j′max is used to recompute that section but
again the initial speed is lower than vini. A second fallback
maximum jerk j′′max is once again increased and the vini is
met.

While computing the procedure for local maximum fix
(Alg. 3), it is also possible that a solution cannot be found
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Speed limit curve

Jerk-limited profile
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min.

Acc.-limited profile

vini j''max = j'max+Δjfb
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(a) Fallback strategy to increase jmax
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Jerk-limited profile

Local
min.

Acc.-limited profile
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j''min = j'min-Δjfb

j'min = jmin-Δjfb

 jmin

(b) Fallback strategy to decrease jmin

Fig. 7. Fallback strategies in jerk-limited speed planning

with the given jerk and acceleration limits. The strategy in
this case is to decrease the minimum allowed jerk a given
amount ∆jfb, so that jmin = jmin −∆jfb and recompute it
again. The procedure is recursively called (line 19 in Alg. 4)
until a solution is found or a minimum jmin value is reached
(jmin

jb ).
An example of this strategy is shown in Fig. 7b. In this case,

the first three represented iterations, where jmin is applied, are
part of the normal operation of the algorithm. However, the
first point of the trajectory is reached and a solution is not
found using that value for jmin, meaning that a lower value
is needed. The first fallback minimum jerk j′min reaches the
speed profile but acceleration continuity is not found in that
point. A second iteration reduces again the minimum allowed
jerk (j′′min) and a solution is found.

As in the previous case, when a solution is not found and
jmin
jb is reached, the acceleration-limited profile for this section

is conserved, assuming that jerk cannot be limited in this
section. Please note that, for the sake of clarity, this mechanism
is not included in the pseudocode in Alg. 4. Also note that,
although the examples in Fig. 7 show the fallback strategies
applied to the initial section when the initial conditions cannot
be met, an analogous mechanism is applied when the final
conditions cannot be met with the original jerk limits.

V. EXPERIMENTAL RESULTS

The performance of the proposed speed planning algorithm
has been extensively evaluated by computing speed profiles
for a large set of paths with different geometries and lengths.
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Fig. 8. Experimental platform

Moreover, some of the generated trajectories have been tested
on an instrumented vehicle.

The experimental platform used for testing and the eval-
uation details are respectively described in the following
subsections.

A. Experimental platform

The proposed algorithm has been validated by performing
different experiments using one of the automated vehicles of
the AUTOPIA Program (see Fig. 8) at the test track of the
Centre for Automation and Robotics (CSIC-UPM) in Arganda
del Rey, Spain.

The localization of the vehicle used in these tests relies on a
RTK-DGPS receiver and on-board sensors to measure vehicle
speed, accelerations and yaw rate. The vehicle also includes a
computer with an Intel Core i7-3610QE and 8Gb RAM, which
is used to run the control architecture [1].

The trajectory tracking system used in this work, relying
on fuzzy logic, is designed and behaves in a decoupled
manner: on the one hand, the lateral controller uses both
lateral and angular errors measured from the ego-vehicle pose
with respect to the reference path, to compute the steering
wheel position. On the other hand, the longitudinal controller
computes the positions of throttle and brake pedals from the
reference speed profile and the speed error (resulting from the
difference of that reference and the measured speed of the
vehicle). Further details about the trajectory tracking can be
found in [10].

B. Trials on test track

Two different paths were used to test the proposed algorithm
in real scenarios (see Fig. 9). While Path 1 includes a route
with a high concentration of curves in a section of 100 meters,
Path 2 (of 200 meters) includes a straight section of 180
meters that allows to reach higher speeds. Both paths were
generated by applying the approach described in [3], i.e. path
points, orientation and curvature are obtained from the analytic
equations of the Bézier curves.

For each of the paths defined, a set of 7 speed profiles were
generated considering different speed planning parameters, as
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Fig. 9. Paths used in trials

TABLE III
RESULTS OBTAINED FOR ALL SETUPS AND PATHS

Setup jmax jmin
Path 1 Path 2

MSJ MSEa MSJ MSEa

1 0.1 -0.1 1.52 0.0510 1.87 0.0425
2 0.2 -0.2 1.79 0.0920 2.30 0.0787
3 0.3 -0.3 2.07 0.0870 2.56 0.0839
4 0.5 -0.5 2.46 0.0899 2.93 0.1236
5 0.8 -0.8 2.81 0.1804 3.98 0.2670
6 1.0 -1.0 3.07 0.2594 4.42 0.3144
7 – – 4.21 0.5703 4.75 0.4937

indicated in Table III. While the maximum speed allowed in
Path 1 was vmax = 40km/h, vmax = 50km/h was set for
Path 2 trajectories. In all setups the following values have been
the same: alongmax = 1.2m/s2, alongmin = −2m/s2 and |alatmax| =
1.2m/s2. In addition, the following values used in fallback
strategy (section IV-C) were considered: ∆jfb = −0.5m/s3

and jmax
jb = −3m/s3.

For the sake of clarity, only some representative setups
are depicted for each path. The generated speed profiles for
setups 5 (jmax = 0.8m/s3) and 7 (no jerk bounds) are
shown in Fig. 10. Fig. 11 shows the speed profile computed
in setups 3 (jmax = 0.3m/s3) and 7. In both figures,
continuous blue, green and yellow lines show the jerk-limited
speed, acceleration and jerk, respectively. As can be seen,
maximum jerk and acceleration limits are respected along
the speed profile. Note that no abrupt acceleration changes
occurs in jerk-limited profiles in contrast to just acceleration-
limited profiles (depicted with dashed lines). For example,
at 205 m in the speed profile in Fig. 10, an acceleration
discontinuity in the acceleration-limited profile is corrected by
the jerk-limited speed planning algorithm while respecting the
maximum accelerations: starting from the maximum positive
acceleration at 187 m, the minimum jerk is applied until
the maximum negative acceleration is reached at 219 mj.
Likewise, note that jerk-limited speed profiles have a smoother
speed evolution along the path, which makes driving more
comfortable when compared to acceleration-limited profiles.

The proposed approach does not necessarily impose maxi-
mum, minimum or null jerk on each point of the trajectory
but intermediate values can be obtained in sections where
the imposed jerk limits are not exceeded. This effect can be
observed around 25 m and 55 m of the Path 1 results shown
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in Fig. 10, where the speed limit curve in the first two curves
present almost flat sections that do not cause high jerk values
exceeding the imposed limits.

C. Performance evaluation

All the setups listed in Table III were tested for both
paths in the experimental platform. Aiming at quantifying the
jerkiness to compare the resulting vehicle performance while
tracking the generated trajectories, the mean square jerk metric
(MSJ) [5] is used to represent the jerkiness of each test is
defined as follows:

MSJ =
1

tf − t0

tf∑
t0

∆â2long
∆t

(10)

where âlong is the longitudinal acceleration measured in the
vehicle during the trials and t0 and tf are the initial and final
time of the test.

The values of MSJ obtained for each setup and path are
shown in Table III. As can be observed, the jerkiness in the
vehicle increases when the maximum allowed jerk grows.
Moreover, the maximum values of MSJ are reached in setup
7 for both paths, i.e. when there is no jerk constraint in the
speed profile.

This effect can be graphically seen in Fig. 12. This figure
shows density graphs of the actual longitudinal and lateral
accelerations measured along the trials on Path 2. It can
be noticed that greater negative (acceleration applied in left
direction) than positive lateral acceleration values are mea-
sured. This is due to the fact that the vehicle must negotiate
more right than left turns to reach the destination. Moreover,

it is also observed that a broader spectrum is covered by
the measured acceleration when jerk is limited (setups 1-6)
in contrast to setup 7. For example, in setup 5 (Fig. 12-e),
intermediate acceleration values are measured between max-
imum allowed longitudinal accelerations (alongmax = 1.2m/s2,
alongmin = −2m/s2) unlike setup 7, causing a smoother driving.

It can be noticed that while most of the measured accelera-
tion values are under the limits imposed in the speed planning,
some of them go further. This effect is mainly caused by the
lack of gravity compensation in accelerometers measurements.
Indeed, road camber and longitudinal slope affect lateral
and longitudinal acceleration measurements, respectively. The
section of the test track traversed by Path 1 and 2 presents neg-
ligible longitudinal slopes. However, road camber is noticeable
(around 6%), causing lateral acceleration reach up to 0.6m/s2

of measurements when the vehicle remains stopped in the
steepest section of the track. Furthermore, lateral acceleration
measurements are also influenced by vibrations induced by
road imperfections and by positive speed tracking errors when
driving on curves, thus generating greater centrifugal forces
than planned. Consequently, greater disturbances are perceived
in lateral acceleration measurements rather than in longitudinal
acceleration ones.

When maximum allowed jerk is set to higher values
(Figs. 12e-g), some positive longitudinal accelerations beyond
the allowed limit can be found. These higher acceleration
values are originated by the longitudinal controller reaction to
the speed error caused by that the lack of acceleration during
the shift from first to second gear. This effect can be easily
seen in the temporal evolution of speed and accelerations
of the trial on Path 2 with setup 7 depicted in Fig. 13 (at
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Fig. 12. Density graph of measured acceleration in the vehicle during the trials in Path 2
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Fig. 13. Speed and accelerations during trial on Path 2 with setup 7 (no jerk
limited)

time t = 6s, t = 20s and t = 45s). However, when the
maximum allowed jerk is below 0.8m/s3, the vehicle is able
to smoothly perform the gear shift as can be observed in the
speed and acceleration evolution of setup 3 in Path 2 shown
in 14. In order to quantify this effect, the mean squared error
of the acceleration tracking (MSEa) is shown in Table III.
As reflected, the MSEa increases when the allowed jerk does.
Moreover, the greatest value is obtained for setup when no jerk
limited. This highlights the positive impact of jerk bounding
in the performance of trajectory tracking controllers.

D. Computation time analysis

To perform a computation time analysis of the proposed
speed planning algorithm, a set of 8 long paths with lengths
between 100 m and 500m were generated over the test
track at the Centre for Automation and Robotics. From these
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Fig. 14. Speed and accelerations during trial on Path 2 with setup 3

long paths, a big set of shorter paths were automatically
generated by splitting each of them into path sections with
incremental lengths by 1m. Thus, a total amount of 423622
paths were generated. Finally, speed profiles were computed
for each of the generated paths and the computing times were
saved. The speed planning parameters for these tests were:
alongmax = 1.2m/s2 , alongmin = −2m/s2 , |alatmax| = 1.2m/s2,
jmax = 0.5m/s3 and jmin = −0.5m/s3.

As expected, the run time of the speed planning algorithm
highly depends on the amount of points of the path. This effect
is shown in Fig. 15a, where it can be noticed a proportional
relationship between the amount of points in the path and
the run time of the jerk-limited speed planning algorithm.
In Fig. 15 the microseconds per path point according to the
number of points of each path is shown. A mean value of
22.71µs/p is obtained.

The separation of points of the paths (∆s) used for the this
timing analysis is fixed along the paths and is set to ∆s =
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Fig. 15. Computation time results

0.1m. Considering this separation, we obtain a mean time
according to the path length of 0.23ms/m. Based on these
results, and taking into account that the real-time planning
architecture in which the proposed speed planing algorithm
is integrated typically generates trajectories with path lengths
around 50m, an approximated average computing time for the
speed planning is 11.35ms.

It is important to note that ∆s = 0.1m is a generous
discretization value for the path points even at low speed
scenarios. In most situations ∆s = 0.2m, or even greater
values, are assumable. If ∆s = 0.2m is adopted,the number
of path points is halved and so is the computation time
consequently, thus obtaining 5.68ms for the speed planning
computation on a 50m length path.

VI. CONCLUSIONS

The proposed algorithm is able to compute time-optimal
speed profiles for given paths while meeting speed, accel-
eration and jerk constraints. The proposed algorithm does
not need to apply iterative interpolations between time and
displacement. Optimization algorithms are not involved either,
allowing low computational cost of the proposed method. Fur-
thermore, the proposed fallback strategies allows to maintain
speed profile profile continuity in critical driving situations
where initial or final conditions cannot be met with the given
acceleration and jerk constraints.

An experimental platform has been used to test and validate
the proposed approach through different trials in real environ-
ments. Moreover, the computing time required by the proposed
algorithm has been analysed. The results show the capability
of the proposed approach to be used in real automated driving
applications.

Future works will focus on increasing the responsiveness
of the speed planning in critical driving situations, further

fallback strategies and their integration with a high-level
decision-making system will be explored.
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[2] A. Artuñedo, J. Godoy, and J. Villagra. “A Primitive
Comparison for Traffic-Free Path Planning”. In: IEEE
Access 6 (2018), pp. 28801–28817.
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