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Motion planning approach considering localization
uncertainty

Antonio Artuñedo, Jorge Villagra, Jorge Godoy and Maria Dolores del Castillo

Abstract—Localization plays an important role in autonomous
driving since a high level of accuracy in vehicle localization is
indispensable for a safe navigation. Most of the motion planning
approaches in the literature assume negligible uncertainty in
vehicle localization. However, the accuracy of localization systems
can be low by design or even can drop depending on the
environment in some cases. In these situations, the localization
uncertainty can be taken into consideration in motion planning
to increase the system reliability. Accordingly, this work presents
two main contributions: (i) a probabilistic occupancy grid-based
approach for localization uncertainty propagation, and (ii) a
motion planning strategy that relies on such occupancy grid.
Thus, the proposed motion planning solution for automated
driving is able to generate safe human-like trajectories in real
time while considering the localization uncertainty, ego-vehicle
constrains and obstacles. In order to validate the proposed
algorithms, several experiments have been conducted in a real
environment.

Index Terms—Automated driving, Motion planning, Localiza-
tion uncertainty.

I. INTRODUCTION

AUTOMATED driving requires methods to generalize
unpredictable situations and reason in a timely manner

in order to react safely even in complex urban situations.
Generally, the knowledge about the environment is incomplete
and the associated uncertainty is high, which affects motion
planning. In view of this, two elements still need further
substantial investigation: world modelling and motion planning
from uncertain information.

Among the decision-making tasks that an automated vehicle
must carry out, motion planning is particularly relevant as it
plays a key role in ensuring driving safety and comfort [1],
[2] while producing safe, human-like and human-aware tra-
jectories in a wide range of driving scenarios. The robotics
community has been intensively working over the last 30
years in motion planning problems. Although many of the
proposed algorithms are able to cope with a wide range
of situations and contexts, they often demand computation-
intensive algorithms with unbounded processing cycles, only
feasible for low speed motion patterns. However, for on-
road autonomous driving, determinism is necessary at high
sampling rates. In this context, optimality can be slightly
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Antonio Artuñedo, Jorge Villagra, Jorge Godoy and Maria Dolores
del Castillo are with the Centre for Automation and Robotics, Arganda
del Rey, Madrid. (e-mails: {antonio.artunedo, jorge.villagra, jorge.godoy,
md.delcastillo}@csic.es)

sacrificed at the expense of safe human-adapted paths. Nev-
ertheless, these approaches involve some drawbacks: (i) these
techniques often provide scenario-dependant solutions, which
may cause wrong behaviours in general real driving on urban
roads [3]; (ii) to guarantee reactivity, the trajectories need to
be exhaustively sampled and evaluated in a high-dimensional
space, which is computationally expensive. To cope with these
limitations, some works (e.g. [4], [5]) propose a higher-level
decision maker able to select the right cost set and sampling
scale for different situations. Recent approaches are able to
compute analytically both path and speed profile in real-time,
taking into account kinematic and dynamic constraints of the
vehicle [6].

The problem of finding an optimal path subject to holo-
nomic constraints avoiding obstacles is known to be PSPACE-
hard [7]. Significant research attention has been directed
towards studying approximate methods or particular solutions
of the general motion planning problem.

Since for most problems of interest in autonomous driving
exact algorithms with practical computational complexity are
unavailable [8], numerical methods are often used. These tech-
niques generally do not find an exact answer to the problem,
but attempt to find a satisfactory solution or a sequence of
feasible solutions that converge to the optimal solution [9].
The performance of these approaches is typically quantified by
the class of problems for which they are applicable as well as
their guarantees for converging to an optimal solution. These
approximate methods for path and trajectory planning can be
divided in three main families [1]: variational methods [10]–
[12], graph-based search methods [13]–[17], and incremental
search methods [18], [19].

As the applicability of variational methods is limited by
their convergence to only local minima, graph-search methods
try to overcome the problem by performing global search
in a discretized version of the path space, generated by
motion primitives. In some specific situations, this fixed graph
discretization may lead to wrong or suboptimal solutions,
in which case incremental search techniques may be useful,
providing a feasible path to any motion planning problem
instance, if one exists. In exchange, the required computation
time to verify this completeness property may be unacceptable
for a real-time system.

The motion planning approaches reviewed above assume
an ideal vehicle localization. However, different existing ap-
proaches take into account the localization uncertainty in the
planning strategy. The following subsection gives an insight
of these existing techniques that are proposed in the literature.
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A. Considering localization uncertainty in navigation
Recent navigation systems rely on high-definition

maps [20]. Assuming a high accuracy of the maps information,
the localization with respect to the map plays an important
role.

Although many guidance systems for automated vehicles
use probabilistic algorithms to solve state estimation problems,
path planning is often conducted without explicitly considering
the uncertainty of the vehicle position. Ignoring positioning
uncertainty during planning may be acceptable if the vehicle
is precisely localized, but it can lead to sub-optimal navigation
decisions if the uncertainty is large. Indeed, in some cases,
the accuracy of localization systems can be low by design
or can drop depending on the driving situation environment
-often in urban environments. Two examples where this may
occur are (i) GPS-based localization systems in cases in which
there are reflections or satellites occlusions, or (ii) challenging
weather conditions that could affect the positioning accuracy
such as cloudy scenarios. In these situations, the localization
uncertainty should be taken into consideration to increase the
system reliability.

There is a number of works explicitly considering percep-
tion/prediction uncertainties in the motion planning process
(e.g. [21]), referred typically to as planning in belief space. A
general formalization for this type of problem is the Partially
Observable Markov Decision Process. There are several works
proposing solutions within this framework (e.g. [22], [23]),
but most of them become quickly intractable for real-time
automotive applications.

To reduce this complexity different strategies have been
adopted: (i) to bound the uncertainties and base the decision
making on the worst-case scenarios [24], (ii) to consider uncer-
tainties with a moderated influence, but using an omnipresent
residual threat level [25], (iii) to take into account multidimen-
sional pose uncertainties due to erroneous measurement and
object prediction through collision probabilities [26], [27].

Alternatively, [28] uses a Linear-Quadratic Gaussian frame-
work to estimate the uncertainty when following a given
candidate trajectory, given the noise characteristics of the
localization and control. The authors incorporate the state
estimation in the future instants as stochastic variables and the
result is a distribution for the state of each candidate trajectory.

Another approach to deal with the localization uncertainty
when using maps is the one proposed in [29]. Although this
paper does not consider motion planning, it presents an inter-
esting technique to encode lane and traffic information in grids.
It represents environment data in a probabilistic occupancy
grid, where the vehicle pose uncertainty is propagated in every
grid cell.

Given the different nature of the approaches found in
the literature to consider the localization uncertainty in the
motion planning strategy, it is very difficult to compare in a
quantitative manner the method proposed in this paper with
the related work. Nevertheless, a qualitative analysis of the
key features of the main approaches proposed in the literature
is summarized in Table I.

These approaches are compared in terms of computational
cost, their dependency on the scenario and whether they have

Approach
Feature Computational

cost
Scenario

dependent
Only tested

in simulation
POMDP-based [30] High Yes Yes
LQG-based [28] Medium Yes Yes
IGHLC [24] — Yes Yes
Our approach Low No No

TABLE I
QUALITATIVE COMPARISON OF RELATED WORK.

been tested only in simulation or not. As can be seen, our
approach exhibits lower computational cost as it does not
require to solve dynamic programming problems (as in [28])
or solve POMDPs (as needed in [30]). In the case of [24],
authors do not provide computation times. In contrast to other
approaches, which have only been tested in simulation, our
method has been validated in an experimental platform in
real environments. In addition, the proposed method is not
dependent on the applied scenario, while the other analysed
strategies have only been tested in specific traffic situations.

Contrarily to some previous works on probabilistic motion
planning [30], [31], often intractable for real-time applications,
the setting presented in this work produces feasible and
comfortable trajectories that introduces an explicit dependence
of localization uncertainty in a grid-based world model. To
deal with positioning inaccuracies in motion planning when
map data is used, a localization uncertainty propagation algo-
rithm is proposed. By means of this approach the occupancy
probability of each cell in a local grid map is obtained, thus
providing a more adapted information about the navigability
of the nearby environment than merely a road corridor, as
considered in the majority of related works.

This article presents two main contributions: (i) the grid-
based approach for localization uncertainty propagation, and
(ii) a motion planning approach that relies on a probabilistic
occupancy grid. Thus, the proposed motion planning solu-
tion for automated driving is able to generate safe human-
like trajectories in a real time setting, while considering the
localization uncertainty, ego-vehicle constraints and obstacles.
The promising results are validated on a variety of driving
situations using an automated vehicle.

The remainder of this paper is structured as follows: In
section II, the proposed localization uncertainty propagation
algorithm is described. Section III introduces the motion
planning approach based on an occupancy grid. The results
on a real vehicle are presented and discussed in section IV.
Finally, section V summarises the conclusions and future
work.

II. LOCALIZATION UNCERTAINTY INFLUENCE

Localization plays an important role in autonomous driving.
In particular, when maps are used as a part of the environ-
ment understanding, a good localization with respect to the
map becomes critical. Note that the localization uncertainty
propagation essentially affects the map and not the perceived
objects. In the ideal case where the localization of the vehicle
is perfectly known, i.e. there are no localization uncertainties
(σx = σy = σθ = 0), a planned trajectory taking into account
information from maps (road corridors) will not compromise
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Fig. 1. Problem introduction

safety, assuming the map is accurate enough. Nonetheless,
in realistic scenarios, errors in both position and orientation
can cause the motion planner to compute trajectories that
take the vehicle off the real edges of the road. To illustrate
this, Fig. 1 shows a comparison between both cases in the
same scenario. In the ideal case, shown in Fig. 1a, the road
corridor fits to the real borders of the road. However, in a
more realistic case (Fig. 1b), the road corridor does not fit
the real edges of the road due to the ego-vehicle localization
errors (xe = ye = 0.05 m, θe = 1°) along the route. As
can be seen in Fig. 1b, the safety margin of the vehicle
(depicted with a light red rectangle) is firstly compromised
20 m ahead the initial position. Moreover, the drift of the
road corridor increases the greater the distance from the
initial position. While the localization error represents the
difference between a localization measurement and the true
localization, the localization uncertainty is the range of values
within which the true localization is guaranteed to be found.
Accordingly, the uncertainty is related to error to the extent
that it represents an estimation about the error in the measured
quantity. Henceforth, location uncertainty is used to state the
proposed propagation method and thus take it into account in
the motion planning strategy.

To mitigate the effect of ego-localization uncertainty, the
method proposed in this work, which is inspired by the afore-
mentioned work [29], takes into consideration the localization
uncertainty estimation by propagating it along an occupancy
grid. Thus, in situations where the localization accuracy is low,
the localization uncertainty can be taken into consideration in
the motion planning in order to increase the reliability of the
navigation system.

The first step is to represent the available map over the grid.
In our case, the information of the map is self-generated from
OpenStreetMap by applying the algorithm presented in [32].
It is composed of a set of Bézier curves that define the left
and right boundaries of the navigable space. In order to set the
occupancy of each Bézier segment over the grid, an extension

Fig. 2. Road corridor rasterization over the grid

of the Bresenham algorithm for cubic Béziers [33] is applied.
After that, the free space existing inside the road corridor is
filled with null occupancy probability while the rest of the grid
is set as occupied (see Fig. 2). In this work, the map is assumed
to be highly reliable. Nevertheless, the unreliability of the
maps can be also considered within the proposed framework.

Finally, the uncertainty of the vehicle pose is propagated at
all the initially free cells using the general approach defined
in [29]. Let Cxi and Cyi denote the coordinates of the cell i of
the grid in the frame Ov , and V xOG , V yOG and V θOG denote
the vehicle position and heading in the frame OG. Then, it is
transformed into the frame OG as follows:(

xOG
yOG

)
= Tf = RvG

(
Cxi
Cyi

)
+

(
V xOG
V yOG

)
(1)

RvG =

(
cos(V θOG) − sin(V θOG)
sin(V θOG) cos(V θOG)

)
(2)

where RvG, in equation (1), is the rotation matrix from the
vehicle frame Ov to the global frame OG. Note that the
uncertainty of the position of each cell in the global frame
(xOG , yOG ) comes from the uncertainty in the vehicle pose
in the global frame (V xOG , V yOG ) as the position of the cells
in the vehicle frame (Cxi, Cyi) is known.

The covariance matrix gi in each cell i can be calculated
from the estimated pose uncertainty as follows:

gi(xi, yi) =

(
δTf
δVOG

)
QV

(
δTf
δVOG

)T
(3)

where Tf (V xOG , V yOG , V θOG) denotes the transformation
in equation (1), QV represents the covariance matrix of the
current pose VOG(V xOG , V yOG , V θOG) in the global frame
and δTf

δVOG
is the Jacobian, expressed as follows:

(
δTf
δVOG

)
=


δTf

δV xOG
δTf

δV yOG
δTf

δV θOG


T

(4)

Thus, the resulting covariance matrix can be expressed as:
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gi(xi, yi) =

(
σ2
xi ρiσxiσyi

ρiσxiσyi σ2
yi

)
=

(
σ2
x + σ2

θ u(V θOG) σ2
θ t(V θOG)

σ2
θ t(V θOG) σ2

y + σ2
θ v(V θOG)

) (5)

where:

u(V θOG) = (− sin(V θOG) Cxi − cos(V θOG) Cyi)
2

v(V θOG) = (cos(V θOG) Cxi − sin(V θOG) Cyi)
2

t(V θOG) = sin(V θOG) cos(V θOG)(Cx
2
i − Cy2i )+

CxiCyi(sin(V θOG)
2 − cos(V θOG)

2)

ρi =
σ2
θ t(V θOG)

σxi σyi

being σx, σy and σθ the given pose uncertainties of the ego-
vehicle localization.

Once the covariance matrix gi is known, a bivariate Gaus-
sian distribution fi is applied to compute the probability
distribution for each cell:

fi(xj , yj) =
1

2πσxiσyi
√
1− ρ2i

·

e
− 1

2(1−ρ2
i
)

[(
Cxj−Cxi

σxi

)2
−2ρi

(
Cxj−Cxi

σxi

)(
Cyj−Cyi

σyi

)
+
(
Cyj−Cyi

σyi

)2
]
(6)

To compute final occupancy probability of each cell, a 95%
confidence ellipse (χ2 = 5.991) is defined from the computed
covariances. Then, the final occupancy probability of each cell
is obtained by dividing the sum of the expected values of the
cells that fall within the confidence ellipse (

∑
j∈Ii fi(xj , yj) ·

Fj) by the sum of their probabilities (
∑
j∈Ii fi(xj , yj)).

P (xi, yi) =

∑
j∈Ii fi(xj , yj) · Fj∑
j∈Ii fi(xj , yj)

(7)

where Ii is the set of cells that falls within the ellipse generated
for cell i, j is the index of the cells inside Ii, S is the size of
set Ii, fi(xj , yj) is the probability in cell j obtained by the
Gaussian distribution in equation (6), generated for the cell i,
and Fj ∈ {0, 1} is the initial occupancy value of the cell j.

A schematic example of the result is shown in Fig. 3,
where cell colours vary from white (free cells) to black
(occupied cells) passing through grey shades representing
different occupancy probability values.

A summary of the localization propagation algorithm over
the road corridor is shown in algorithm 1.

The uncertainty propagation over the grid results in the
narrowing of the road corridor, being this effect particularly
pronounced when the heading uncertainty is high. The occu-
pancy probability of a priori free cells becomes higher when
the xv coordinate is slightly increased as can be seen in 3.

Fig. 4 shows the results of uncertainty propagation using
different values of σx, σy and σθ. In all cases the grid size is
20× 30 meters with a grid resolution of 20 cm.

Fig. 4a shows the initial road corridor rasterization over the
grid. In this first case, only fully occupied (black) and free
(white) cells are obtained. The other three figures (4b, 4c and

Fig. 3. Localization uncertainty propagation over the grid
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(b) σx = 0.5 m, σy = 0.5 m and
σθ = 0 rad
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(c) σx = 0.5 m, σy = 0.5 m and
σθ = 0.07 rad
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(d) σx = 0.5 m, σy = 0.5 m and
σθ = 0.3 rad

Fig. 4. Examples of localization uncertainty propagation over a 20m× 30m
occupancy grid
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Input: Pose uncertainty (σx, σy , σθ), Road corridor
Output: Occupancy probability in each cell
grid← Left and right boundaries of the road corridor ;
grid(cells inside road corridor)← 0 (empty) ;
grid(cells outside road corridor)← 1 (occupied) ;
foreach i← 1 to n do

compute covariance matrix [equation (3)]
compute bivariate Gaussian distribution

[equation (6)]
grid(i)←

∑
j∈Ii

fi(xj ,yj)·Fj∑
j∈Ii

fi(xj ,yj)
[equation (7)]

end
return grid;

Algorithm 1: Localization uncertainty propagation over
an occupancy grid
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uncertainty
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Fig. 5. Functional diagram of the architecture

4d) show the occupancy probabilities resulting from different
values of σx, σy and σθ. As can be observed in Fig. 4b,
where σx = σy = 0.5 m and σθ = 0 rad, most of the cells
within the road corridor are completely free even with high
uncertainties in X and Y axis. In this case, it can be noticed
that the occupancy probability is increased in the proximity
to the corridor edges. Furthermore, the case represented in
Fig. 4c adds a small orientation uncertainty. This leads to
the narrowing of the road corridor in the farthest cells from
the vehicle. These examples depict the high influence of the
orientation uncertainty in comparison with X and Y ones.
Finally, a case with high longitudinal, lateral and angular
uncertainties is shown in Fig. 4d, where only the cells closest
to the vehicle are guaranteed to be unoccupied.

The proposed strategy is generic so there is no specific
working range for the localization uncertainty values. As a re-
sult, in extreme cases where the localization information is not
available, the localization uncertainty would increase to very
high values. In these situations, the proposed method would
provide an occupancy grid with high occupancy probability
values in the initially free cells. Consequently, the motion
planning algorithm would not provide trajectories that pass
through that probably occupied space.

III. OCCUPANCY GRID-BASED MOTION PLANNING

The proposed strategy for motion planning runs within the
functional architecture shown in Fig. 5. As can be observed,

the Planning block includes both global and local planning
functionalities.

On the one hand, based on a destination coming from
the human-machine interface (HMI) and OpenStreepMap data
(OSM), the global planner is able to obtain a global route
represented by a list of nodes that are later used to compute
a road corridor [32]. Then, this corridor is used by the
algorithm proposed in this paper (blue block) to propagate the
localization uncertainties (σx, σy and σθ) over the occupancy
grid.

On the other hand, the local planner block is in charge of
computing the final trajectories that the control module will
use to generate the final control actions. The proposed local
motion planning algorithm uses the path candidates generation
method presented in [34], [35]. This trajectory generation re-
lies on safe, human-like and comfortable trajectories computed
evaluating cost-effective primitives, based on quintic Bézier
curves. Using this type of primitive, it is possible to generate
paths with continuous and smooth curvatures. Furthermore, the
applied method for speed planning imposes maximum speed
and maximum lateral and longitudinal accelerations to provide
speed profiles similar to what a human driver would do. In this
regard, by human-like safe trajectories we refer to those that,
on the one hand, are safe, i.e. remain within the navigation
corridor and do not collide with any obstacle, and on the other
hand, are similar to those that a human driver would perform
in the same driving situation, both in geometric terms of the
path and in the computed speed profile. Moreover, the method
is able to consider the kinodynamic constrains of the vehicle
while reactively handling dynamic environments in presence
of both static and moving obstacles. Nevertheless, note that the
strategy proposed in this work for considering the localization
uncertainty is not dependent on the path primitive used. This
motion planning approach comprises the following stages:

1) Motion planning problem initialization: At this first
stage, the motion planning solver defines the search
space to explore depending on the current driving sit-
uation (i.e. whether static/dynamic obstacles must be
avoided or not). From the stated search space, a set of
continuous-curvature path candidates based on quintic
Bézier curves is generated.

2) Candidates evaluation: At this stage all the path can-
didates are evaluated by checking their validity and
calculating their costs based on previously defined cost
functions.

3) Candidate selection: Among the valid evaluated candi-
dates, one is selected based on its cost value.

4) Final trajectory calculation: Once the best candidate
is chosen, the speed profile is calculated taking into
account the maximum speed and accelerations to ensure
comfort inside the vehicle.

Each of these stages are detailed in the following subsec-
tions.

A. Motion planning problem initialization
In order to use the occupancy probability information in

the local planner, the stages problem initialization and can-
didates evaluation have been extended with respect to the
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approach in [35]. The first stage of the trajectory generator
is in charge of defining the search space to create the path
candidates. Taking into account the size of the occupancy grid,
the problem initialization states the path candidates from the
reference points that falls within the grid.

The size of the occupancy grid is updated every time it
is computed. This is carried out to cover a specified amount
of meters ahead the current vehicle position measured over
the centreline of the road corridor. In this context, the road
corridor ahead the vehicle is used to calculate the width and
height of the occupancy grid ensuring that both left and right
boundaries from the vehicle position until the last considered
point centreline point fall within the grid. Moreover, the
occupancy grid is always aligned with the vehicle orientation.

1) Path candidates generation: In this first stage (motion
planning problem initialization), the set of path candidates to
be evaluated are stated. The generation of path candidates
relies on the algorithm proposed in [34], [35], which focuses
on ensuring comfort inside the vehicle while providing safe
trajectories to avoid collisions with obstacles. For further
details about the collision avoidance strategy for both static
and moving obstacles, please refer to [35]. This approach is
based on self-generated road corridors as described in [32],
whose centrelines are used to generated a set of reference
points to create the path candidates from the vehicle pose. To
choose the path primitive, the extensive comparison presented
in [36] has been taken into account. A quintic Bézier curve is
used to generate the path candidates due to its controllability
and the possibility to impose the curvature at its extremes. The
analytic expression is obtained as follows:

Cdb(t) =

db∑
i=0

P ji Bi,db(t), t ∈ [0, 1] (8)

being Bi,db(t) =
(
db
i

)
ti(1− t)db−1 the Bernstein polynomials,

Pi the control points of Bézier curve, and db the degree of the
Bézier curve. In the case of a quintic curve (db = 5), it can
be expressed explicitly as:

C5(t) = (1− t)5P0 + 5t(1− t)4P1

+ 10t2(1− t)3P2 + 10t3(1− t)2P3

+ 5t4(1− t)P4 + t5P5, t ∈ [0, 1]

(9)

By using this primitive, the motion planning approach is
able to generate continuous curvature paths, i.e. maintaining
G2 continuity. Moreover, this approach aims to achieve the
best trade-off between optimality and computing time.

B. Candidates evaluation

In this stage, all the path candidates that have been selected
in the problem initialization are evaluated.

The main difference when using the occupancy grid for mo-
tion planning with respect to the approach presented in [34],
[35] is found in this stage. The drivable space boundaries will
be replaced by the occupancy grid to evaluate the validity of
each path candidate and the cost related to its smoothness.

The validity is determined by checking three conditions
are fulfilled: firstly (i) the maximum curvature of the path
candidate must be lower than the maximum curvature feasible
by the vehicle (κpcmax < κvmax); (ii) the path must be inside
the road corridor and (iii) there must not be a collision with
any obstacle.

One of the main advantages of the occupancy grid ap-
proach is that it allows to fuse environmental information
coming from different sources. In this case, both the road
corridor and the obstacles perceived by exteroceptive sensors
are rasterized into the grid. This method allows to abstract
the motion planning algorithm to the different information
sources, focusing only in one occupancy grid. That means
that points (ii) and (iii) mentioned in the paragraph above
(i.e. collision checking) can be verified at once. Therefore,
instead of using collision checking algorithms to sequentially
verify that the path is inside the road corridor and there are
no collisions with obstacles, the occupancy values of the grid
cell crossed by the path candidate are used to accomplish this
task.

The approach for collision checking uses the bounding
rectangle of the vehicle. The method is based on the generation
of a polygon that represents the space that the vehicle would
take while driving along the computed path. These occupancy
polygons are referred as path-polygons in the remaining of the
paper and are used to check the validity of each path candidate.

1) Occupancy polygon computation: Once it has been
verified that the maximum curvature constraint is fulfilled, the
path-polygons of the candidate is computed. In order to obtain
the occupancy polygon, the dimensions of the vehicle and
the path generated as explained in section III-A1 are needed.
Taking advantage of the fact that the path is a Bézier curve or
a concatenation of them, the tangent vector and the curvature
can be obtained analytically at each point of the path.

Based on the path, the right and left bounds of the area
occupied by the vehicle can be calculated as follows: the right
bound will be composed of the points of right extreme of the
front of the vehicle when the vehicle is turning left and of the
points of right extreme of the rear axle when turning right.
The left bound is calculated analogously: it is composed of
the points of left extreme of the front of the vehicle when the
vehicle is turning right and of the points of left extreme of the
rear axle when turning left.

It is worth to mention that a safety margin is added around
the vehicle (dsm). To determine if vehicle is turning right or
left, the sign of the curvature is used. Finally, the polygon
is conformed by joining the points of right and left sides to
obtain a closed shape. Fig. 6 shows an example of the path-
polygon for a given path, where ltw is the vehicle axle track,
lla is the distance from the rear axle to the front bumper and
llb is the distance from rear bumper to the rear axle.

In point B of Fig. 6 it can be seen how the vehicle is turning
right and the extreme left point of the front belongs to the left
bound of the polygon, while the right extreme point of the
rear axle y used for the right bound.

Once the path path-polygon has been obtained, the grid cells
that the candidate occupies are identified. To do that, firstly
the candidate polygon is rasterized on an empty grid with the
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Fig. 6. Example of the path-polygon calculation for collision checking

(a) Valid candidate. (b) Invalid candidate. (c) Invalid candidate.

Fig. 7. Path-polygon rasterization and validation on an occupancy grid.

same size that the occupancy grid and the scanline flood fill
algorithm [37] is used to find the cells that fall within the
polygon. Thus, a list of all cells occupied by the candidate is
obtained and can be used to extract occupancy data from the
occupancy grid to verify its validity and compute its cost.

To determine the validity of the candidate, the occupancy
probability of each cell traversed by the candidate must be
below a given occupancy probability threshold. Thus, if the
path candidate falls on cells where the occupancy probability
is greater than Pvth, the candidate is discarded. In this regard,
to consider as invalid the path candidates that pass through
a probably occupied area, the threshold Pvth has been set
to 50%. The candidate is valid if the following equation is
verified:

P cmax < Pvth (10)

where P cmax is the maximum probability occupancy of all cells
crossed by the candidate.

Some examples of the rasterization of path-polygons are
shown in Fig. 7. Notice that in the case depicted in Fig. 7b,
the path is inside the road corridor, unlike the case in Fig. 7c.
Nevertheless, it is also considered as invalid as the maximum
occupancy probability (P cmax) exceeds the established thresh-
old (Pvth).

2) Candidate cost computation: Once the validity of the
candidates is checked, the cost of the valid ones is computed.
This cost function comprises different components: On the one
hand, first and second derivatives of the curvature reflect the

smoothness of the path along the curve. A weight (wκ̈) has
been added to balance the value of both derivatives. Moreover,
the length of the path (Lp) is used to normalize its result. The
motivation for adding a weight to Lp (wLp ) is that in case
that wLp = 1 (i.e. this weight is not considered), the path that
minimizes the cost function tends to be straight and short in
spite of being in curved road sections, thus obtaining almost
straight paths in cases in which it should not. In order to avoid
that, wLp is used with values greater than 1. In addition to
that, another component has been added to the function in
order to represent the mean occupancy probability over the
path candidate (P pc), that is weighted by using wog . Note that
this last term of the cost function (P pc) allows the candidate’s
mean occupancy probability to be weighted along with the
other terms of such function in order to avoid driving through
areas with high occupancy probabilities.

Jp = wogP pc +
1

wLpLp

∫ sf

s0

κ̇(s)2 + wκ̈κ̈(s)
2 ds (11)

C. Best candidate selection and final trajectory calculation

Among all valid candidates evaluated in the previous stage,
the candidate with minimum cost is selected as the path for
the final trajectory. Then, the Bézier curve of the selected path
candidate is evaluated to obtain equidistant points.

Since equidistant points can not be directly computed in a
Bézier curve, the curve polynomials are evaluated using a fine
discretization of the parameter t to approximate the relation-
ship between t and the distance over the curve (s). Finally,
the values of t to obtain equidistant points are calculated by
interpolation.

Once a path with equidistant points is obtained, the speed
profile is computed using the method introduced in [35].
This speed profile calculation method allows to impose
maximum lateral (amax,lat) and longitudinal accelerations
(amax,acc, amax,dec) as well as maximum speed (vmax) for
an arbitrary path whose curvature can be accurately obtained.

IV. RESULTS AND DISCUSSION

This section presents the experiments carried out in an ex-
perimental vehicle at the Centre for Automation and Robotics
(CAR). A set of different trials have been conducted for the
proposed motion planning approach.

A. Experimental platform

The proposed motion planning algorithm has been validated
by performing different experiments using one of the instru-
mented vehicles of the AUTOPIA Program (see Fig. 8) at the
test track of the Centre for Automation and Robotics (CSIC-
UPM) in Arganda del Rey, Spain.

The localization of the vehicle used in these tests relies on a
RTK-DGPS receiver. To perceive the environment, the vehicle
is equipped with a stereo camera and a four-layers LiDAR
installed at the front of the vehicle. In these tests only the
LiDAR was used to perceive the environment. The vehicle also
includes an on-board computer with an Intel Core i7-3610QE
and 8Gb RAM.
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Fig. 8. Experimental platform

Despite the fact that automated vehicle control involves cou-
pled longitudinal and lateral dynamics, they can be considered
as almost entirely decoupled when the intended applications
comprise slight control actions [38]. In highways (high speed
with low curvatures) or urban environments (low speed with
high curvatures) lateral and longitudinal vehicle control sys-
tems are very often designed independently (e.g. [39]). Thus,
the trajectory tracking used in this work is designed and
behaves in a decoupled manner.

Both lateral and longitudinal controllers for trajectory track-
ing rely on fuzzy logic: On the one hand, the lateral controller
uses both lateral and angular errors measured from the ego-
vehicle pose with respect to the trajectory, to computed the
steering wheel position. On the other hand, the longitudinal
controller computes the positions of throttle and brake pedals
from the reference speed (taken from the trajectory speed
profile) and speed error. Further details about the trajectory
tracking can be found in [40].

B. Motion planning results

Different trials have been carried out to test the performance
of the proposed motion planning method. To perform them,
the trajectory generator has been integrated in the architecture
proposed in [34].

The proposed motion planning approach requires the spec-
ification of some parameters. On the one hand, those used to
define the occupancy grid properties: distance ahead = 60 m
and grid cell size 0.2 m. Although the algorithm has been
designed to consider the localization uncertainties provded by
the localization system at each instant, the following fixed
values have been considered in the results shown below:
σx = σy = 0.02 m and σθ = 0.05 rad. The motivation for
such high values is to make the proposed motion planning
algorithm work under the worst conditions a vehicle equipped
with RTK-DGPS can typically navigate. On the other hand, the
parameters of the trajectory generation algorithm. They have
been selected empirically in order to find a balance between
computing time, grid accuracy and distance ahead the vehicle.
In order to balance the different aspects represented by the
cost function in (11), values of the weights are: wog = 10−5,

Parameter Description Value
dsm Safety distance around vehicle (m) 0.4
nrp Reference points used to create candidates 15
vmax Max. allowed speed (km/h) 20
amax,lat Max. lateral acceleration (m/s2) 1.0
amax,acc Max. positive longitudinal acceleration (m/s2) 0.4
amax,dec Max. negative longitudinal acceleration (m/s2) 0.7

TABLE II
PATH AND SPEED PLANNING CONFIGURATION

Fig. 9. Test track and scenarios location at Centre for Automation and
Robotics (CSIC-UPM) in Arganda del Rey, Spain

wLp = 103 and wκ̈ = 60. In the experiments carried out, the
trajectory generator was set up to compute a total of 4500
path candidates in each planning request. The most relevant
parameters and values used in these experiments are shown in
table II.

The proposed algorithm has been evaluated in two different
driving scenes in a real environment (see Fig. 9): (i) an urban-
like scenario with sharp curves and (ii) an urban-like scenario
where obstacles must be avoided.

1) Scenario 1: Urban-like route through tight curves: This
scenario consists of an urban-like layout where the vehicle has
to drive through consecutive tight curves.

Fig. 10 shows 6 different instants of the trial when a new
trajectory is requested. Each of them includes the occupancy
grid, the valid candidates being evaluated and the selected
path. In this figure, each candidate is represented by its
path instead of its path-polygon for a better visualization.
In general, it can be noticed that the space occupied by
the selected path candidates (in green) comprise a very low
occupancy probability. For example, in Fig. 10a, even if there
are longer valid candidates, the selected candidate falls in an
area that has less occupancy probability than the longer ones.

Fig. 11 shows the concatenation of all paths followed by the
vehicle and the real vehicle path during the performed trial.
The resulting path presents a smooth shape along the whole
trial.

In Fig. 12, results of the trajectory tracking during the full
trial in scenario 1 are shown. It can be seen that both lateral
and angular errors used in the lateral control present a smooth
behaviour, even though the trajectory is updated 19 times
during the trial. Moreover, in Fig. 12b can be noticed that
the curvature remains continuous along the whole path. Note
that the higher the grid size, the longer the grid computing
time. Finally, Fig. 12c shows the reference speed and measured
vehicle speed during this trial.

Regarding the planning time, the mean of the processing
time per planning request is 112.99 ms with a maximum of
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(a) Planning request 1. Instant t=0.813 s (b) Planning request 2. Instant t=1.355 s (c) Planning request 4. Instant t=1.982 s

(d) Planning request 10. Instant t=18.044 s (e) Planning request 18. Instant t=41.662 s (f) Planning request 19. Instant t=44.223 s

Fig. 10. Valid and selected candidates at some of the planning requests during the trial in scenario 1
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(a) Lateral and angular control errors during the trial.
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(b) Path curvature and steering wheel angle during the trial.
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(c) Reference and vehicle speed during the trial.

Fig. 12. Trajectory tracking in scenario 1
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Fig. 13. Acceleration measured in the vehicle during the trial in scenario 1

218.45 ms, showing a reasonable computing time.
To analyze the resulting behaviour of the vehicle in terms

of occupant comfort, Fig. 13 shows a density plot of the real
longitudinal and lateral accelerations to measured along the
trial. It shows that most of the acceleration measurements fall
within the dashed white rectangle that represent the stated
acceleration limits.

Fig. 14a and 14b show the computation time and the number
of grids of grids generated during this experiment, respectively.
Note that the variability in grid sizes is due to variations in
road geometry over the entire trial. The histogram in Fig. 14b
depicts the distribution of the number of computed grids
during the test (60 s approximately), according to their sizes.
As can be seen, the size of most grids is between 20000
and 50000 cells in this case. Fig. 14a shows the computation
time of localization uncertainty propagation on the grids with
respect to their size of all the grids computed. In this case,
the computation times of most grids concentrates between 60-
90 ms, what is a reasonable value.

2) Scenario 2: Obstacles avoidance: This scenario includes
two obstacles located at different places of the route that the
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(a) Computation time of occupancy
grid regarding the grid size.

0 1 2 3 4 5 6 7
Grid size (number of cells) x10

4

0

20

40

60

80

100

120

140

N
u

m
b

er
 o

f 
g

ri
d

s

(b) Histogram with respect of grid
size.

Fig. 14. Occupancy grid results in scenario 1
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Fig. 15. Resulting paths in scenario 2

vehicle is following to reach the destination point. Thus, this
scenario includes a greater complexity with respect to the
previous one.

Fig. 15 shows the concatenation of final paths together with
the real path of the vehicle. In this case, the trajectory is
quickly corrected to avoid the obstacles satisfactorily even
with noisy perception information. In addition, Fig. 16 shows
two consecutive screenshots of the 3D visualization while the
vehicle was avoiding the obstacles and Fig. 17 shows two front
vehicle pictures at similar instants of the trial, where obstacles
(two cardboard boxes) can been seen.

Regarding computing time, the average planning time for
the whole trial was 193.18 ms with a maximum of 272.51 ms
for the whole experiment. In comparison with the previous

(a) Avoiding first obstacle. (b) Avoiding second obstacle.

Fig. 16. 3D visualization screenshots while avoiding obstacles

(a) Avoiding first obstacle. (b) Avoiding second obstacle.

Fig. 17. Pictures of the frontal vehicle view while avoiding obstacles
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(a) Lateral and angular control errors during the trial.
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(b) Path curvature and steering wheel angle during the trial.
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(c) Reference and vehicle speed during the trial.

Fig. 18. Trajectory tracking in scenario 2

case, the mean planning computation time has been increased
due to the obstacles avoidance requests. Note that depending
on the shape of the ahead section of the road corridor that
fall within the grid, the amount of reference points used to
generate path candidates vary along the trial. However, it is
limited to the value of parameter nrp. Taking into account
that the occupancy grid has been parametrized to achieve a
balance between computing time, ahead distance and planning
space exploration, typically a lower number of reference points
are used and consequently a lower amount of candidates are
generated.

Fig. 18 depicts the same information about the trajectory
tracking that has been shown in the previous case. As can be
observed, the vehicle is able to smoothly follow the trajectory
during the whole trial, even when the obstacles are being
avoided.

In order to analyse the comfort inside the vehicle during the
test, Fig. 19 shows a density map to represent the measured
longitudinal and lateral accelerations. It shows how most of
the measured acceleration values fall within the limits (marked
with a dashed white rectangle) established in the planning.
However, some values are outside mainly due to the joint
effect of vibrations induced by road imperfections and vehicle
pitching and rolling in slopy and bank stretches.

Finally, Fig. 20a and 20b show the computation time and
the number of grids of grids generated during this experiment,
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Fig. 19. Acceleration measured in the vehicle during the trial in scenario 2
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(a) Computation time of occupancy
grid regarding the grid size.
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Fig. 20. Occupancy grid results in scenario 2

respectively. In this case, the computation times of the grids
concentrates in around 75 ms for most of the grids computed
during the test, whose sizes are mostly between 35000 and
55000 cells. Although this scenario includes obstacles, these
results are similar to those obtained in the previous experiment.
Note that the distribution of the grids according to their size is
different from the previous case. This is caused by the different
route followed in this scenario.

In conclusion, these experiments shows that the proposed
motion planning algorithm using the occupancy grid as input
is able to generate an important number of valid candidates
and select the optimum one in a few milliseconds, even
in sharp areas where consecutive curves must be overcome
by the vehicle. Moreover, the behaviour of the proposed
strategy is safer than the same path planning approach without
considering localization uncertainty. Indeed, it can be observed
how the obtained path tends to be more centred in the lane, as
the probability of occupation is typically lower in this region
than in the vicinity of the edges.

V. CONCLUSION

In this work, a probabilistic occupancy grid approach for
motion planning that deals with localization uncertainty is
proposed. This approach proposes a general way to fuse data
coming from maps and perception systems on the occupancy
grid. Moreover, a localization uncertainty propagation algo-
rithm allows to compute the occupancy probability in each
cell of the grid. Thus, the motion planning algorithms can
be influenced by the current localization uncertainty of the
vehicle.

Several experiments have been carried out in a real en-
vironment in order to test the performance of the proposed

algorithms for localization uncertainty propagation and motion
planning. The results show admissible computing times while
safe and comfortable trajectories are generated.

Future work will focus on extending the capabilities of
the approach by implementing the algorithms for parallelized
computing architectures, as both localization uncertainty prop-
agation and motion planning algorithm are highly paral-
lelizable (for each grid cell and for each path candidate,
respectively). In addition, machine learning techniques can be
applied to enable a better use of the available computational
resources when the computation time plays a critical role. On
the other hand, the grid approach can be extended to consider
the perception uncertainty as well as to investigate the effect
of the ego-localization uncertainty in the perceived obstacles.
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[40] J. Godoy, J. Pérez, E. Onieva, J. Villagra, V. Milanés, and R. Haber,
“A driverless vehicle demonstration on motorways and in urban envi-
ronments,” Transport, 2015.
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